Last updated: 2018-06-22
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: eb85223
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .RData
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Untracked files:
Untracked: Ggsb_logo.r.pdf
Untracked: Rplot.pdf
Untracked: _workflowr.yml
Untracked: analysis/filter_bam.Rmd
Untracked: analysis/gencode.v19.annotation.proteincodinggene.saf
Untracked: analysis/temp
Untracked: analysis/top5_gen_wind200.bed
Untracked: data/DaPars_APA_geuvadis.txt
Untracked: data/Day7_cardiomyocytes_droNC_seq.bam
Untracked: data/Day7_cardiomyocytes_droNC_seq.bam.bai
Untracked: data/Day7_cardiomyocytes_drop_seq.bam
Untracked: data/Day7_cardiomyocytes_drop_seq.bam.bai
Untracked: data/LCL_3utr.txt
Untracked: data/LCL_3utrAB.bed
Untracked: data/LCL_3utrAB.neg.chr20.bed
Untracked: data/LCL_3utrAB_pos.chr1.bed
Untracked: data/LCL_3utrAB_pos.chr21.bed
Untracked: data/NET3-18486.gene.coverage.bed
Untracked: data/NET3-18486.gene.coverage.noSM.bed
Untracked: data/NET3-18486.gene.coverage.nosn.nosno.bed
Untracked: data/NET3-18486.gene.coverage.notopwind.bed
Untracked: data/NET3-18486.tss.coverage.bed
Untracked: data/NET3-18486_combined_Netpilot-sort.FC200.cov.bed
Untracked: data/NET3-18486_combined_Netpilot-sort.FC200.cov.no0.bed
Untracked: data/NET3-18486_combined_Netpilot-sort.exon.cov.txt
Untracked: data/NET3-18505.gene.coverage.bed
Untracked: data/NET3-18505_combined_Netpilot-sort.FC200.cov.no0.bed
Untracked: data/NET3-18508_combined_Netpilot-sort.FC200.cov.no0.bed
Untracked: data/NET3-19128_combined_Netpilot-sort.FC200.cov.no0.bed
Untracked: data/NET3-19141_combined_Netpilot-sort.FC200.cov.no0.bed
Untracked: data/NET3-19193_combined_Netpilot-sort.FC200.cov.no0.bed
Untracked: data/NET3-19239_combined_Netpilot-sort.FC200.cov.no0.bed
Untracked: data/NET3-19257_combined_Netpilot-sort.FC200.cov.no0.bed
Untracked: data/RNAseqGeuvadis_STAR_18486.coverage.bed
Untracked: data/RNAseqGeuvadis_STAR_18486.gene.coverage.bed
Untracked: data/RefSeqGenes.bed
Untracked: data/SRR1575922-sort.bam
Untracked: data/SRR1575922-sort.bam.bai
Untracked: data/SwitchGear_TSS.bed
Untracked: data/UMI_18486_dep_stat.txt
Untracked: data/UMI_18486_dep_stat_tab.txt
Untracked: data/UMI_18508_dep_stat.txt
Untracked: data/UMI_18508_nondep_stat.txt
Untracked: data/UMI_19238_dep_stat.txt
Untracked: data/UMI_Net3_18486_dedupstat.txt
Untracked: data/UMI_Net3_18486_stat.txt
Untracked: data/UMI_Net3_18505_dedupstat.txt
Untracked: data/UMI_Net3_18505_stat.txt
Untracked: data/UMI_Net3_18508_dedupstat.txt
Untracked: data/UMI_Net3_18508_stat.txt
Untracked: data/UMI_Net3_19128_dedupstat.txt
Untracked: data/UMI_Net3_19128_stat.txt
Untracked: data/UMI_Net3_19141_dedupstat.txt
Untracked: data/UMI_Net3_19141_stat.txt
Untracked: data/UMI_Net3_19193_dedupstat.txt
Untracked: data/UMI_Net3_19193_stat.txt
Untracked: data/UMI_Net3_19239_dedupstat.txt
Untracked: data/UMI_Net3_19239_stat.txt
Untracked: data/UMI_Net3_19257_dedupstat.txt
Untracked: data/UMI_Net3_19257_stat.txt
Untracked: data/UMI_mayer_stat.txt
Untracked: data/YG-SP-NET1-18486-dep-2017-10-13_S4_R1_001-sort.dedup.cov.bed
Untracked: data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.AC093901.bed
Untracked: data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.BTRC.bed
Untracked: data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.RNU5B.bed
Untracked: data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.WDR74.bed
Untracked: data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.chr2.bed
Untracked: data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.insig2.bed
Untracked: data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.ppef2.bed
Untracked: data/YG-SP-NET3-18486_combined_Netpilot-sort.cov.rnu259p.bed
Untracked: data/YG-SP-NET3-18486_combined_Netpilot-sort.dedup.cov.insig2.bed
Untracked: data/all_RNAmetrics.picard.none.csv
Untracked: data/all_files.APA500.coverage.bed
Untracked: data/all_files_coverage.bed
Untracked: data/all_strand_genecounts_18486.txt
Untracked: data/bam_files_chr/
Untracked: data/blcl.hg38.sorted.bam
Untracked: data/blcl.hg38.sorted.bam.bai
Untracked: data/cell_growth_3.21.18.csv
Untracked: data/clip_18486_dep.txt
Untracked: data/clusters.bed
Untracked: data/clusters.hg38
Untracked: data/clusters.hg38.3utr.neg.bed
Untracked: data/clusters.hg38.3utr.pos.bed
Untracked: data/clusters.hg38.bed
Untracked: data/dedup_18486_mapqual.txt
Untracked: data/drop7_cardio_3utr.txt
Untracked: data/drop7_cardio_3utrAB.neg.chr21.bed
Untracked: data/drop7_cardio_3utrAB.pos.chr21.bed
Untracked: data/ensembl2refseq.txt
Untracked: data/eqtl_fullgene/
Untracked: data/eqtl_genes_effectsize.txt
Untracked: data/eqtl_output.cis.txt
Untracked: data/eqtl_output.txt
Untracked: data/eqtl_strand_spec/
Untracked: data/exon_cov/
Untracked: data/fc_genecov/
Untracked: data/gencode.v19.annotation.distfilteredgenes.bed
Untracked: data/gencode.v19.annotation.egqtlfilter.bed
Untracked: data/gencode.v19.annotation.eqtlfilter.bed
Untracked: data/gencov_18486.bed
Untracked: data/gene_cov_count/
Untracked: data/gene_coverage_18486_dedup_hist.txt
Untracked: data/gene_coverage_18486_hist.txt
Untracked: data/gene_coverage_18508_dep.txt
Untracked: data/gene_coverage_18508_dep_hist.txt
Untracked: data/gene_coverage_18508_nondep_hist.txt
Untracked: data/gene_coverage_19238_dep_hist.txt
Untracked: data/gene_coverage_mayer_SRR1575922_hist.txt
Untracked: data/gene_dedup_cov_count/
Untracked: data/genotypes.rs7144811.txt
Untracked: data/growth_curve_3.16.csv
Untracked: data/hES.hg38.sorted.bam
Untracked: data/hES.hg38.sorted.bam.bai
Untracked: data/hg19.GM72.CTCF
Untracked: data/hg19.ref.genes.bed
Untracked: data/insig2sec.txt
Untracked: data/mapped_18486_dep.txt
Untracked: data/mapped_18486_dep_max.txt
Untracked: data/mapped_18508_dep.txt
Untracked: data/mapped_19238_dep.txt
Untracked: data/mapped_mayer.txt
Untracked: data/mapped_qual_18486.txt
Untracked: data/mapped_qual_18505.txt
Untracked: data/mapped_qual_18508.txt
Untracked: data/mapped_qual_19128.txt
Untracked: data/mapped_qual_19141.txt
Untracked: data/mapped_qual_19193.txt
Untracked: data/mapped_qual_19239.txt
Untracked: data/mapped_qual_19257.txt
Untracked: data/matrix_expression.txt
Untracked: data/matrix_genotypes.csv
Untracked: data/matrix_genotypes.txt
Untracked: data/merged_Net1.bam
Untracked: data/merged_Net1.bam.bai
Untracked: data/meta_info_coverage.bed
Untracked: data/names_geno.txt
Untracked: data/net-3-readmap/
Untracked: data/net1_18486_dep_dedup.bed
Untracked: data/net1_18486_dep_dedup_chr.bed
Untracked: data/net4_readcounts.xlsx
Untracked: data/net_pilot_eqtl_expression.bed
Untracked: data/net_pilot_eqtl_genotypes.vcf
Untracked: data/netcomb_intronicbases.csv
Untracked: data/opp_strand_genecounts_18486.txt
Untracked: data/opp_strand_genecounts_18505.txt
Untracked: data/opp_strand_genecounts_filt_18486.txt
Untracked: data/perc_alive_3.16.csv
Untracked: data/prom_coverage/
Untracked: data/qual_18486_dep.txt
Untracked: data/qual_18508_dep.txt
Untracked: data/qual_19238_dep.txt
Untracked: data/qual_mayer.txt
Untracked: data/refseq_250up.bed
Untracked: data/run_lm_APA.txt
Untracked: data/same_strand_genecounts_18486.txt
Untracked: data/same_strand_genecounts_18505.txt
Untracked: data/same_strand_genecounts_filt_18486.txt
Untracked: data/sort_dedup_3prime_chr2_no0.18486.txt
Untracked: data/sort_dedup_chr2_no0_18486.txt
Untracked: data/test.txt
Untracked: data/three_prime_utr.bed
Untracked: data/top5_exonlist.txt
Untracked: data/top5_exonlist_18486_fiveprime_cov.txt
Untracked: data/top5_exonlist_18486_fiveprime_cov2.txt
Untracked: data/top5_exonlist_18486_fiveprime_cov2_filter.txt
Untracked: data/top5_exonlist_18486_threeprime_cov.txt
Untracked: data/top5_exonlist_18486_threeprime_cov2.txt
Untracked: data/top5_exonlist_18486_threeprime_cov2_filter.txt
Untracked: data/top5_gen_wind200.bed
Untracked: data/top5_gen_wind200.tab.bed
Untracked: data/uniq_genes/
Untracked: data/windows_200/
Untracked: docs/temp
Untracked: docs/top5_gen_wind200.bed
Untracked: output/Rs7144811_apa_usage.pdf
Untracked: output/picard.accrossgenebodies.netpilot.csv
Unstaged changes:
Modified: analysis/APA_qtl_RNAseq.Rmd
Modified: analysis/LCL_growth.Rmd
Modified: analysis/Net_3_explore.Rmd
Modified: analysis/Reads_per_pas.Rmd
Modified: analysis/UTR_coverage.Rmd
Modified: analysis/_site.yml
Modified: analysis/about.Rmd
Modified: analysis/bin_windows.Rmd
Modified: analysis/check_bamid.Rmd
Deleted: analysis/chunks.R
Modified: analysis/conda.environment.Rmd
Modified: analysis/config.snake.setup.Rmd
Modified: analysis/create_blacklist.Rmd
Modified: analysis/data_for_ggplot.Rmd
Modified: analysis/eqtl_bystrand.Rmd
Modified: analysis/explore_umi_usage.Rmd
Modified: analysis/extend_APA_qtl.Rmd
Modified: analysis/gviz_plots.Rmd
Modified: analysis/initial.data.exploration.Rmd
Modified: analysis/license.Rmd
Modified: analysis/map_stats_from_bam.Rmd
Modified: analysis/reads_in_genes.Rmd
Modified: analysis/recreate_mayer_figs.Rmd
Modified: analysis/strand_spec.Rmd
Modified: analysis/test-analysis.Rmd
Modified: analysis/three_prime_UTR.Rmd
Modified: analysis/update_snakefile.Rmd
Modified: analysis/use_deeptools.Rmd
Modified: analysis/visualize_genomefeatures.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | eb85223 | Briana Mittleman | 2018-06-22 | genic bases |
html | f9622a0 | Briana Mittleman | 2018-06-22 | Build site. |
Rmd | 0201bd8 | Briana Mittleman | 2018-06-22 | change filter cuttoff |
html | 9787ad5 | Briana Mittleman | 2018-06-22 | Build site. |
Rmd | 4e3c679 | Briana Mittleman | 2018-06-22 | add percent coverage and correlatin |
html | 363ea13 | Briana Mittleman | 2018-06-22 | Build site. |
Rmd | 97a0c53 | Briana Mittleman | 2018-06-22 | wflow_publish(c(“analysis/index.Rmd”, “analysis/net-4-explore.Rmd”)) |
The goal of this analysis is to explore the second batch of pilot netseq data (net4) with the 3 lanes of the original line. This data has been run on 3 lanes.
Net4 lines * 19238
* 19223
* 18497
* 19209
* 18500
* 18870
* 19225
* 18853
I want to use feature counts to summarize how many counds we have in each protien coding gene. There are 20,347 genes in the annotation file.
Make an SAF file instead: Gene id, Chr, Start, End, Strand from the gencode.v19.annotation.proteincodinggene.bed
awk 'BEGIN {print "GeneID" "\t" "Chr" "\t" "Start" "\t" "End" "\t" "Strand"} {print $4 "\t" $1 "\t" $2 "\t" $3 "\t" $6}' gencode.v19.annotation.proteincodinggene.bed >gencode.v19.annotation.proteincodinggene.saf
fc_gene.sh
#!/bin/bash
#SBATCH --job-name=FC_genes
#SBATCH --time=8:00:00
#SBATCH --partition=gilad
#SBATCH --output=fc_gene.out
#SBATCH --error=fc_gene.err
#SBATCH --mem=20G
#SBATCH --mail-type=END
module load Anaconda3
source activate net-seq
#input is a bam file
sample=$1
describer=$(echo ${sample} | sed -e 's/.*\YG-SP-//' | sed -e "s/_combined_Netpilot-sort.bam$//")
featureCounts -T 5 -a /project2/gilad/briana/genome_anotation_data/gencode.v19.annotation.proteincodinggene.saf -F 'SAF' -g 'GeneID' -o /project2/gilad/briana/Net-seq-pilot/data/fc_genecov/genecov.${describer}.txt $1
test on: /project2/gilad/briana/Net-seq-pilot/data/sort/YG-SP-NET3-19257_combined_Netpilot-sort.bam
Create a wrapper:
#!/bin/bash
#SBATCH --job-name=w_fcgenes
#SBATCH --time=8:00:00
#SBATCH --output=w_fcgenes.out
#SBATCH --error=w_fcgenes.err
#SBATCH --partition=gilad
#SBATCH --mem=8G
#SBATCH --mail-type=END
for i in $(ls /project2/gilad/briana/Net-seq-pilot/data/sort/*combined_Netpilot-sort.bam); do
sbatch fc_gene.sh $i
done
At this point 8 samples have over 100mil mapped reads. They are 18497, 18508, 18853, 18870, 19128, 19193, 19209 and 19239. We are waiting for more reads for 19225 and 18500. Unfortunately maping is low for 19223, but I have not diagnosed the problem yet.
library(workflowr)
Loading required package: rmarkdown
This is workflowr version 1.0.1
Run ?workflowr for help getting started
library(dplyr)
Warning: package 'dplyr' was built under R version 3.4.4
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(ggplot2)
library(tidyr)
library(reshape2)
Warning: package 'reshape2' was built under R version 3.4.3
Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':
smiths
library(edgeR)
Warning: package 'edgeR' was built under R version 3.4.3
Loading required package: limma
Warning: package 'limma' was built under R version 3.4.3
cov_18486=read.table("../data/fc_genecov/genecov.NET3-18486.txt", header=TRUE)
cov_18497=read.table("../data/fc_genecov/genecov.NET3-18497.txt", header=TRUE)
cov_18500=read.table("../data/fc_genecov/genecov.NET3-18500.txt", header=TRUE)
cov_18505=read.table("../data/fc_genecov/genecov.NET3-18505.txt", header=TRUE)
cov_18508=read.table("../data/fc_genecov/genecov.NET3-18508.txt", header=TRUE)
cov_18853=read.table("../data/fc_genecov/genecov.NET3-18853.txt", header=TRUE)
cov_18870=read.table("../data/fc_genecov/genecov.NET3-18870.txt", header=TRUE)
cov_19128=read.table("../data/fc_genecov/genecov.NET3-19128.txt", header=TRUE)
cov_19141=read.table("../data/fc_genecov/genecov.NET3-19141.txt", header=TRUE)
cov_19193=read.table("../data/fc_genecov/genecov.NET3-19193.txt", header=TRUE)
cov_19209=read.table("../data/fc_genecov/genecov.NET3-19209.txt", header=TRUE)
cov_19223=read.table("../data/fc_genecov/genecov.NET3-19223.txt", header=TRUE)
cov_19225=read.table("../data/fc_genecov/genecov.NET3-19225.txt", header=TRUE)
cov_19238=read.table("../data/fc_genecov/genecov.NET3-19238.txt", header=TRUE)
cov_19239=read.table("../data/fc_genecov/genecov.NET3-19239.txt", header=TRUE)
cov_19257=read.table("../data/fc_genecov/genecov.NET3-19257.txt", header=TRUE)
gene_length=cov_18486$End- cov_18486$Start
Standardize by gene length
cov_18486=cov_18486 %>% mutate(st_18486=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18486_combined_Netpilot.sort.bam/gene_length)
Warning: package 'bindrcpp' was built under R version 3.4.4
cov_18497=cov_18497 %>% mutate(st_18497=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18497_combined_Netpilot.sort.bam/gene_length)
cov_18500=cov_18500 %>% mutate(st_18500=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18500_combined_Netpilot.sort.bam/gene_length)
cov_18505=cov_18505 %>% mutate(st_18505=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18505_combined_Netpilot.sort.bam/gene_length)
cov_18508=cov_18508 %>% mutate(st_18508=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18508_combined_Netpilot.sort.bam/gene_length)
cov_18853=cov_18853 %>% mutate(st_18853=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18853_combined_Netpilot.sort.bam/gene_length)
cov_18870=cov_18870 %>% mutate(st_18870=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.18870_combined_Netpilot.sort.bam/gene_length)
cov_19128=cov_19128 %>% mutate(st_19128=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19128_combined_Netpilot.sort.bam/gene_length)
cov_19141=cov_19141 %>% mutate(st_19141=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19141_combined_Netpilot.sort.bam/gene_length)
cov_19193=cov_19193 %>% mutate(st_19193=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19193_combined_Netpilot.sort.bam/gene_length)
cov_19209=cov_19209 %>% mutate(st_19209=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19209_combined_Netpilot.sort.bam/gene_length)
cov_19223=cov_19223 %>% mutate(st_19223=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19223_combined_Netpilot.sort.bam/gene_length)
cov_19225=cov_19225 %>% mutate(st_19225=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19225_combined_Netpilot.sort.bam/gene_length)
cov_19238=cov_19238 %>% mutate(st_19238=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19238_combined_Netpilot.sort.bam/gene_length)
cov_19239=cov_19239 %>% mutate(st_19239=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19239_combined_Netpilot.sort.bam/gene_length)
cov_19257=cov_19257 %>% mutate(st_19257=X.project2.gilad.briana.Net.seq.pilot.data.sort.YG.SP.NET3.19257_combined_Netpilot.sort.bam/gene_length)
Join these on the gene name:
names=c("GeneID", "st_18486", "st_18497", "st_18500", "st_18505", "st_18508", "st_18853", "st_18870", "st_19128", "st_19141", "st_19193", "st_19209", "st_19223", "st_19225", "st_19238", "st_19239", "st_19257")
cov_all_df=data.frame(cov_18486$Geneid,cov_18486$st_18486, cov_18497$st_18497, cov_18500$st_18500, cov_18505$st_18505, cov_18508$st_18508, cov_18853$st_18853, cov_18870$st_18870, cov_19128$st_19128, cov_19141$st_19141, cov_19193$st_19193, cov_19209$st_19209, cov_19223$st_19223, cov_19225$st_19225, cov_19238$st_19238, cov_19239$st_19239, cov_19257$st_19257)
colnames(cov_all_df)= names
genes_detected=function(col, num){
#takes incov_all_dfl col which corresponds to one library
tot_genes=nrow(cov_all_df)
exp_genes=sum(col >num)
return(exp_genes/tot_genes)
}
detected_genes0=c(genes_detected(cov_all_df$st_18486, 0), genes_detected(cov_all_df$st_18497,0), genes_detected(cov_all_df$st_18500,0), genes_detected(cov_all_df$st_18505,0), genes_detected(cov_all_df$st_18508,0), genes_detected(cov_all_df$st_18853,0), genes_detected(cov_all_df$st_18870,0), genes_detected(cov_all_df$st_19128,0), genes_detected(cov_all_df$st_19141,0), genes_detected(cov_all_df$st_19193,0), genes_detected(cov_all_df$st_19209,0), genes_detected(cov_all_df$st_19223,0), genes_detected(cov_all_df$st_19225,0), genes_detected(cov_all_df$st_19238,0), genes_detected(cov_all_df$st_19239,0), genes_detected(cov_all_df$st_19257,0))
names(detected_genes0)=c("18486", "18497", "18500", "18505", "18508", "18853", "18870", "19128", "19141", "19193", "19209", "19223", "19225", "19238", "19239", "19257")
barplot(detected_genes0, ylim = c(0,1), main="Net-seq Genes detected greater than 0 standardized reads", ylab="Proportion non zero genes", xlab="Library", col = 'Blue')
abline(h=mean(detected_genes0))
Version | Author | Date |
---|---|---|
9787ad5 | Briana Mittleman | 2018-06-22 |
0 is not the most informative detection rate because it could be due to noise. I need to look at the distribution to pick a better cuttoff.
plot(log10(sort(cov_all_df$st_18486, decreasing = T)))
Version | Author | Date |
---|---|---|
f9622a0 | Briana Mittleman | 2018-06-22 |
9787ad5 | Briana Mittleman | 2018-06-22 |
I should use .001 or \(10^{-3}\) as a cuttoff.
detected_genes_cut=c(genes_detected(cov_all_df$st_18486, .001), genes_detected(cov_all_df$st_18497,.001), genes_detected(cov_all_df$st_18500,.001), genes_detected(cov_all_df$st_18505,.001), genes_detected(cov_all_df$st_18508,.001), genes_detected(cov_all_df$st_18853,.001), genes_detected(cov_all_df$st_18870,.001), genes_detected(cov_all_df$st_19128,0.001), genes_detected(cov_all_df$st_19141,0.001), genes_detected(cov_all_df$st_19193,0.001), genes_detected(cov_all_df$st_19209,0.001), genes_detected(cov_all_df$st_19223,0.001), genes_detected(cov_all_df$st_19225,0.001), genes_detected(cov_all_df$st_19238,0.001), genes_detected(cov_all_df$st_19239,0.001), genes_detected(cov_all_df$st_19257,0.001))
names(detected_genes_cut)=c("18486", "18497", "18500", "18505", "18508", "18853", "18870", "19128", "19141", "19193", "19209", "19223", "19225", "19238", "19239", "19257")
barplot(detected_genes_cut, ylim = c(0,1), main="Net-seq Genes detected greater than .001 standardized reads", ylab="Proportion genes passing filter", xlab="Library", col = 'Blue')
abline(h=mean(detected_genes_cut))
Version | Author | Date |
---|---|---|
f9622a0 | Briana Mittleman | 2018-06-22 |
cor_function=function(data){
corr_matrix= matrix(0,ncol(data),ncol(data))
for (i in seq(1,ncol(data))){
for (j in seq(1,ncol(data))){
x=cor.test(data[,i], data[,j], method='pearson')
cor_ij=as.numeric(x$estimate)
corr_matrix[i,j]=cor_ij
}
}
return(corr_matrix)
}
covall_matrix=as.matrix(cov_all_df[,2:17])
covall_cor= cor_function(covall_matrix)
rownames(covall_cor)=c("NA18486", "NA18497", "NA18500", "NA18505", "NA18508", "NA18853", "NA18870", "NA19128", "NA19141", "NA19193", "NA19209", "NA19223", "NA19225", "NA19238", "NA19239", "NA19257")
colnames(covall_cor)=c("NA18486", "NA18497", "NA18500", "NA18505", "NA18508", "NA18853", "NA18870", "NA19128", "NA19141", "NA19193", "NA19209", "NA19223", "NA19225", "NA19238", "NA19239", "NA19257")
covall_cor_melt=melt(covall_cor)
ggheatmap=ggplot(data = covall_cor_melt, aes(x=Var1, y=Var2, fill=value)) +
geom_tile() +
labs(title="Net-seq Correlation Heatplot")
ggheatmap
Version | Author | Date |
---|---|---|
f9622a0 | Briana Mittleman | 2018-06-22 |
Line 19223 is the line with mapping problems. I expected this one to have low correlations.
I will use the per_intergenic bases stat from the PICARD RNA metrics results.
genic_bases=read.csv("../data/netcomb_intronicbases.csv", header=T)
genic_bases=genic_bases %>% mutate(Pct_geneic=1-Pct_intergenic)
ggplot(genic_bases,aes(x=Library, y=Pct_geneic)) + geom_col(fill="blue") + labs(y="Pct mapped reads in genic region", title="Percent of mapped bases in genic region")
sessionInfo()
R version 3.4.2 (2017-09-28)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2.2 edgeR_3.20.9 limma_3.34.9 reshape2_1.4.3
[5] tidyr_0.7.2 ggplot2_2.2.1 dplyr_0.7.5 workflowr_1.0.1
[9] rmarkdown_1.8.5
loaded via a namespace (and not attached):
[1] Rcpp_0.12.17 compiler_3.4.2 pillar_1.1.0
[4] git2r_0.21.0 plyr_1.8.4 bindr_0.1.1
[7] R.methodsS3_1.7.1 R.utils_2.6.0 tools_3.4.2
[10] digest_0.6.15 lattice_0.20-35 evaluate_0.10.1
[13] tibble_1.4.2 gtable_0.2.0 pkgconfig_2.0.1
[16] rlang_0.2.1 yaml_2.1.19 stringr_1.3.1
[19] knitr_1.18 locfit_1.5-9.1 rprojroot_1.3-2
[22] grid_3.4.2 tidyselect_0.2.4 glue_1.2.0
[25] R6_2.2.2 purrr_0.2.5 magrittr_1.5
[28] whisker_0.3-2 backports_1.1.2 scales_0.5.0
[31] htmltools_0.3.6 assertthat_0.2.0 colorspace_1.3-2
[34] labeling_0.3 stringi_1.2.2 lazyeval_0.2.1
[37] munsell_0.4.3 R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.0.1