Last updated: 2020-03-23

Checks: 7 0

Knit directory: apaQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/.Rhistory
    Ignored:    data/.DS_Store
    Ignored:    data/ProSeq/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  @
    Untracked:  GEO_brimittleman/
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm.allChrom
    Untracked:  analysis/APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm.allChrom
    Untracked:  analysis/QTLexampleplots.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  analysis/eQTLoverlap.Rmd
    Untracked:  analysis/interpret verify bam.Rmd
    Untracked:  analysis/interpret_verifybam.Rmd
    Untracked:  analysis/mergeRNA.Rmd
    Untracked:  analysis/oldstuffNotNeeded.Rmd
    Untracked:  analysis/remove_badlines.Rmd
    Untracked:  analysis/totSpecInNuclear.Rmd
    Untracked:  analysis/totSpecIncludenotTested.Rmd
    Untracked:  analysis/totalspec.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  checksumsfastq.txt.gz
    Untracked:  code/.NascentRNAdtPlotFirstintronicPAS.sh.swp
    Untracked:  code/._Allsplicesite2fasta.py
    Untracked:  code/._ApaQTL_nominalNonnorm.sh
    Untracked:  code/._BothFracDTPlotGeneRegions.sh
    Untracked:  code/._BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/._ClosestTissuePAS.sh
    Untracked:  code/._ColocApAeQTL.sh
    Untracked:  code/._ColocApAeQTL_PM.sh
    Untracked:  code/._Coloc_generalAPAeQTL.R
    Untracked:  code/._Coloc_generalAPAeQTL_PM.R
    Untracked:  code/._CreateRNALZforeQTLs.sh
    Untracked:  code/._CreateRNALZnucAPAqtls.sh
    Untracked:  code/._DistPAS2Sig_RandomIntron.py
    Untracked:  code/._EandPqtl_perm.sh
    Untracked:  code/._EandPqtls.sh
    Untracked:  code/._ExtractGene4eQTLLZ.py
    Untracked:  code/._ExtractGene4eQTLLZpy
    Untracked:  code/._ExtractGeneRNAAssoc.py
    Untracked:  code/._ExtractPAS4LZeQTLs.py
    Untracked:  code/._ExtractPAS4eQTLsLZ.sh
    Untracked:  code/._ExtractPASforLZ.py
    Untracked:  code/._ExtractPASforLZ_run.sh
    Untracked:  code/._FC_NucintornUpandDown.sh
    Untracked:  code/._FC_UTR.sh
    Untracked:  code/._FC_intornUpandDownsteamPAS.sh
    Untracked:  code/._FC_nascentseq.sh
    Untracked:  code/._FC_newPeaks_olddata.sh
    Untracked:  code/._HMMpermuteTotal.py
    Untracked:  code/._HmmPermute.py
    Untracked:  code/._IntronicPASDT.sh
    Untracked:  code/._LC_samplegroups.py
    Untracked:  code/._LD_qtl.sh
    Untracked:  code/._LD_snpsproxy.sh
    Untracked:  code/._MapAllRBP.sh
    Untracked:  code/._NascentRNAdtPlot.sh
    Untracked:  code/._NascentRNAdtPlot3UTRPAS.sh
    Untracked:  code/._NascentRNAdtPlotExcludeFirstintronicPAS.sh
    Untracked:  code/._NascentRNAdtPlotNucPAS.sh
    Untracked:  code/._NascentRNAdtPlotTotPAS.sh
    Untracked:  code/._NascentRNAdtPlotintronicPAS.sh
    Untracked:  code/._NascnetRNAdtPlotPAS.sh
    Untracked:  code/._NetSeq_fourthintronDT.sh
    Untracked:  code/._NomResfromPASSNP.py
    Untracked:  code/._NuclearPAS_5per.bed.py
    Untracked:  code/._NuclearandRNA5samp_dtplots.sh
    Untracked:  code/._PTTfacetboxplots.R
    Untracked:  code/._PrematureQTLNominal.sh
    Untracked:  code/._PrematureQTLPermuted.sh
    Untracked:  code/._QTL2bed.py
    Untracked:  code/._QTL2bed_withstrand.py
    Untracked:  code/._RBPdisrupt.sh
    Untracked:  code/._RNAbam2bw.sh
    Untracked:  code/._RNAseqDTplot.sh
    Untracked:  code/._Randomsplicesite2fasta.py
    Untracked:  code/._Rplots.pdf
    Untracked:  code/._RunRes2PAS.sh
    Untracked:  code/._SAF215upbed.py
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._TESplots100bp.sh
    Untracked:  code/._TESplots150bp.sh
    Untracked:  code/._TESplots200bp.sh
    Untracked:  code/._TotalPAS_5perc.bed.py
    Untracked:  code/._Totspec_example.sh
    Untracked:  code/._Totspec_exampleTOT.sh
    Untracked:  code/._Untitled
    Untracked:  code/._ZipandTabPheno.sh
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._allNucSpecQTLine.py
    Untracked:  code/._allNucSpecfromNonNorm.py
    Untracked:  code/._annotatePacBioPASregion.sh
    Untracked:  code/._annotatedPAS2bed.py
    Untracked:  code/._apaInPandE.py
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTLCorrectpval_6or7a.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_nominalInclusive.sh
    Untracked:  code/._apaQTL_nominalv67.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._apaQTL_permuted_test6A7A.sh
    Untracked:  code/._apainRibo.py
    Untracked:  code/._assignNucIntonpeak2intronlocs.sh
    Untracked:  code/._assignTotIntronpeak2intronlocs.sh
    Untracked:  code/._bam2BW_5primemost.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._bothFracDTplot1stintron.sh
    Untracked:  code/._bothFracDTplot4thintron.sh
    Untracked:  code/._bothFrac_FC.sh
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._changeRibonomQTLres2genename.py
    Untracked:  code/._changenomQTLres2geneName.py
    Untracked:  code/._chooseAnno2PAS_pacbio.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._closestannotated.sh
    Untracked:  code/._closestannotated_byfrac.sh
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._codingdms2bed.py
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNominal2SNPLOC.py
    Untracked:  code/._convertNominal2SNPloc2Versions.py
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._correctNomeqtl.R
    Untracked:  code/._createPlinkSampfile.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._eQTL_switch2snploc.py
    Untracked:  code/._eQTLgenestestedapa.py
    Untracked:  code/._encodeRNADTplots.sh
    Untracked:  code/._extactPAS100meanphyloP.py
    Untracked:  code/._extractGeneLZfiles.sh
    Untracked:  code/._extractGeneLZfileseQTLs.sh
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._extractPACmeanPhyloP.py
    Untracked:  code/._extractPhylop50up.py
    Untracked:  code/._extractPhylopextra50.py
    Untracked:  code/._extractRNApval4lz.py
    Untracked:  code/._extractseqfromqtlfastq.py
    Untracked:  code/._fc2leafphen.py
    Untracked:  code/._fc_filteredPAS6and7As.sh
    Untracked:  code/._fifteenBPupstreamPAS.py
    Untracked:  code/._fiftyBPupstreamPAS.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterLDsnps.py
    Untracked:  code/._filterMPPAS.py
    Untracked:  code/._filterMPPAS_15.py
    Untracked:  code/._filterMPPAS_15_7As.py
    Untracked:  code/._filterMPPAS_50.py
    Untracked:  code/._filterSAFforMP.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._finalPASbed2SAF.py
    Untracked:  code/._fix4su304corr.py
    Untracked:  code/._fix4su604corr.py
    Untracked:  code/._fix4sukalisto.py
    Untracked:  code/._fixExandUnexeQTL
    Untracked:  code/._fixExandUnexeQTL.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._fixFChead_bothfrac.py
    Untracked:  code/._fixFChead_short.py
    Untracked:  code/._fixGWAS4Munge.py
    Untracked:  code/._fixH3k12ac.py
    Untracked:  code/._fixPASregionSNPs.py
    Untracked:  code/._fixRNAhead4corr.py
    Untracked:  code/._fixRNAkalisto.py
    Untracked:  code/._fix_randomIntron.py
    Untracked:  code/._fixgroupedtranscript.py
    Untracked:  code/._fixhead_netseqfc.py
    Untracked:  code/._getAPAfromanyeQTL.py
    Untracked:  code/._getApapval4eqtl.py
    Untracked:  code/._getApapval4eqtl_unexp.py
    Untracked:  code/._getApapval4eqtl_version67.py
    Untracked:  code/._getDownstreamIntronNuclear.py
    Untracked:  code/._getIntronDownstreamPAS.py
    Untracked:  code/._getIntronUpstreamPAS.py
    Untracked:  code/._getQTLalleles.py
    Untracked:  code/._getQTLfastq.sh
    Untracked:  code/._getUpstreamIntronNuclear.py
    Untracked:  code/._grouptranscripts.py
    Untracked:  code/._intersectVCFandupPAS.sh
    Untracked:  code/._keep5perMAF.py
    Untracked:  code/._keepSNP_vcf.sh
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._makeSAFbothfrac5perc.py
    Untracked:  code/._makeSNP2rsidfile.py
    Untracked:  code/._makeeQTLempirical_unexp.py
    Untracked:  code/._makeeQTLempiricaldist.py
    Untracked:  code/._makegencondeTSSfile.py
    Untracked:  code/._mapSSsnps2PAS.sh
    Untracked:  code/._mergRNABam.sh
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeAnnotations.sh
    Untracked:  code/._mergeBW_norm.sh
    Untracked:  code/._mergeBamNascent.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._miRNAdisrupt.sh
    Untracked:  code/._mnase1stintron.sh
    Untracked:  code/._mnaseDT_fourthintron.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._netseqDTplot1stIntron.sh
    Untracked:  code/._netseqFC.sh
    Untracked:  code/._nominavalfortotspec.py
    Untracked:  code/._noninalpval4alltot.py
    Untracked:  code/._nucQTLGWAS.py
    Untracked:  code/._nucSpecQTLineData.py
    Untracked:  code/._nucSpeceffectsize.py
    Untracked:  code/._nucspecnucPASine.py
    Untracked:  code/._pQTLsotherdata.py
    Untracked:  code/._pacbioDT.sh
    Untracked:  code/._pacbioIntronicDT.sh
    Untracked:  code/._parseALLSSres.py
    Untracked:  code/._parseBestbamid.py
    Untracked:  code/._parseLDRes.py
    Untracked:  code/._parseLDresBothPAS.sh
    Untracked:  code/._parseRanodmSSres.py
    Untracked:  code/._parseSSres.py
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._phenoQTLfromlist.py
    Untracked:  code/._processYRIgen.py
    Untracked:  code/._pttQTLsinapaQTL.py
    Untracked:  code/._qtlRegionseq.sh
    Untracked:  code/._qtlsPvalOppFrac.py
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._removeXfromHmm.py
    Untracked:  code/._removeloc_pheno.py
    Untracked:  code/._riboQTL.sh
    Untracked:  code/._runCorrectNomEqtl.sh
    Untracked:  code/._runFixGWAS4Munge.sh
    Untracked:  code/._runHMMpermuteAPAqtls.sh
    Untracked:  code/._runHMMpermuteeQTLS.sh
    Untracked:  code/._runMakeEmpiricaleQTL_unexp.sh
    Untracked:  code/._runMakeeQTLempirical.sh
    Untracked:  code/._run_bam2bw_all3prime.sh
    Untracked:  code/._run_bam2bw_extra3.sh
    Untracked:  code/._run_bestbamid.sj
    Untracked:  code/._run_dist2sig_randomintron.sh
    Untracked:  code/._run_filtersnpLD.sh
    Untracked:  code/._run_getAPAfromeQTL_version6.7.sh
    Untracked:  code/._run_getApaPval4eqtl.sh
    Untracked:  code/._run_getapafromeQTL.py
    Untracked:  code/._run_getapafromeQTL.sh
    Untracked:  code/._run_getapapval4eqtl_unexp.sh
    Untracked:  code/._run_leafcutterDiffIso.sh
    Untracked:  code/._run_prxySNP.sh
    Untracked:  code/._run_pttfacetboxplot.sh
    Untracked:  code/._run_sepUsagephen.sh
    Untracked:  code/._run_sepgenobychrom.sh
    Untracked:  code/._run_verifybam.sh
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._sepUsagePhen.py
    Untracked:  code/._sepgenobychrom.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._sortindexRNAbam.sh
    Untracked:  code/._specAPAinE.py
    Untracked:  code/._splicesite2fasta.py
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/._subsetAPAnotEorPgene.py
    Untracked:  code/._subsetAPAnotEorPgene_2versions.py
    Untracked:  code/._subsetAPAnotEorR.py
    Untracked:  code/._subsetApanoteGene.py
    Untracked:  code/._subsetApanoteGene_2versions.py
    Untracked:  code/._subsetNootherQTL.py
    Untracked:  code/._subsetUnexplainedeQTLs.py
    Untracked:  code/._subsetVCF_SS.sh
    Untracked:  code/._subsetVCF_noSSregions.sh
    Untracked:  code/._subsetVCF_upstreamPAS.sh
    Untracked:  code/._subset_diffisopheno.py
    Untracked:  code/._subsetpermAPAwithGenelist.py
    Untracked:  code/._subsetpermAPAwithGenelist_2versions.py
    Untracked:  code/._subsetvcf_otherreg.sh
    Untracked:  code/._subsetvcf_permSS.sh
    Untracked:  code/._subtrachfiveprimeUTR.sh
    Untracked:  code/._subtractExons.sh
    Untracked:  code/._subtractfiveprimeUTR.sh
    Untracked:  code/._tabixSNPS.sh
    Untracked:  code/._tenBPupstreamPAS.py
    Untracked:  code/._test.pdf
    Untracked:  code/._testVerifyBam.sh
    Untracked:  code/._tissuePAS2hg19.sh
    Untracked:  code/._totSeceffectsize.py
    Untracked:  code/._totspecinE.py
    Untracked:  code/._totspecqtlFacetBoxplots.sh
    Untracked:  code/._totspecqtlFacetBoxplotsTOT.sh
    Untracked:  code/._twentyBPupstreamPAS.py
    Untracked:  code/._utrdms2saf.py
    Untracked:  code/._vcf2bed.py
    Untracked:  code/._verifyBam18517N.sh
    Untracked:  code/._verifyBam18517T.sh
    Untracked:  code/._verifyBam19128N.sh
    Untracked:  code/._verifyBam19128T.sh
    Untracked:  code/._wrap_verifybam.sh
    Untracked:  code/._writePTTexamplecode.py
    Untracked:  code/._writePTTexamplecode.sh
    Untracked:  code/.pversion
    Untracked:  code/.snakemake/
    Untracked:  code/1
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_nominal_inclusive.err
    Untracked:  code/APAqtl_nominal_inclusive.out
    Untracked:  code/APAqtl_nominal_nonNorm.err
    Untracked:  code/APAqtl_nominal_nonNorm.out
    Untracked:  code/APAqtl_nominal_versions67.err
    Untracked:  code/APAqtl_nominal_versions67.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/APAqtl_permuted_versions67.err
    Untracked:  code/APAqtl_permuted_versions67.out
    Untracked:  code/Allsplicesite2fasta.py
    Untracked:  code/BothFracDTPlot1stintron.err
    Untracked:  code/BothFracDTPlot1stintron.out
    Untracked:  code/BothFracDTPlot4stintron.err
    Untracked:  code/BothFracDTPlot4stintron.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/BothFracDTPlotGeneRegions_norm.err
    Untracked:  code/BothFracDTPlotGeneRegions_norm.out
    Untracked:  code/ClosestTissuePAS.sh
    Untracked:  code/ColocApAeQTL.err
    Untracked:  code/ColocApAeQTL.out
    Untracked:  code/ColocApAeQTL.sh
    Untracked:  code/ColocApAeQTLPM.err
    Untracked:  code/ColocApAeQTLPM.out
    Untracked:  code/ColocApAeQTL_PM.sh
    Untracked:  code/Coloc_generalAPAeQTL.R
    Untracked:  code/Coloc_generalAPAeQTL_PM.R
    Untracked:  code/CreateRNALZforeQTLs.sh
    Untracked:  code/CreateRNALZnucAPAqtls.sh
    Untracked:  code/DistPAS2Sig_RandomIntron.py
    Untracked:  code/EandPqtl.err
    Untracked:  code/EandPqtl.out
    Untracked:  code/EncodeRNADTPlotGeneRegions.err
    Untracked:  code/EncodeRNADTPlotGeneRegions.out
    Untracked:  code/ExtractGene4eQTLLZ.py
    Untracked:  code/ExtractGene4eQTLLZpy
    Untracked:  code/ExtractGeneRNAAssoc.py
    Untracked:  code/ExtractPAS4LZeQTLs.py
    Untracked:  code/ExtractPAS4eQTLsLZ.sh
    Untracked:  code/ExtractPASforLZ.py
    Untracked:  code/ExtractPASforLZ_run.sh
    Untracked:  code/FC_NucintronPASupandDown.err
    Untracked:  code/FC_NucintronPASupandDown.out
    Untracked:  code/FC_UTR.err
    Untracked:  code/FC_UTR.out
    Untracked:  code/FC_intronPASupandDown.err
    Untracked:  code/FC_intronPASupandDown.out
    Untracked:  code/FC_nascent.err
    Untracked:  code/FC_nascentout
    Untracked:  code/FC_newPAS_olddata.err
    Untracked:  code/FC_newPAS_olddata.out
    Untracked:  code/HmmPermute.p
    Untracked:  code/IntronicPASDT.err
    Untracked:  code/IntronicPASDT.out
    Untracked:  code/LD_vcftools.hap.out
    Untracked:  code/MapAllRBP.sh
    Untracked:  code/MapRBP.err
    Untracked:  code/MapRBP.out
    Untracked:  code/NascentDTPlotGeneRegions.err
    Untracked:  code/NascentDTPlotGeneRegions.out
    Untracked:  code/NascentDTPlotPAS.err
    Untracked:  code/NascentDTPlotPAS.out
    Untracked:  code/NascentDTPlotPAS_3utr.err
    Untracked:  code/NascentDTPlotPAS_3utr.out
    Untracked:  code/NascentDTPlotPAS_firstintron.err
    Untracked:  code/NascentDTPlotPAS_firstintron.out
    Untracked:  code/NascentDTPlotPAS_intron.err
    Untracked:  code/NascentDTPlotPAS_intron.out
    Untracked:  code/NascentDTPlotPAS_nuc.err
    Untracked:  code/NascentDTPlotPAS_nuc.out
    Untracked:  code/NascentDTPlotPAS_tot.err
    Untracked:  code/NascentDTPlotPAS_tot.out
    Untracked:  code/Nuclear_example.err
    Untracked:  code/Nuclear_example.out
    Untracked:  code/NuclearandRNA5samp_dtplots.sh
    Untracked:  code/NuclearandRNAFracDTPlotGeneRegions.err
    Untracked:  code/NuclearandRNAFracDTPlotGeneRegions.out
    Untracked:  code/PACbioDT.err
    Untracked:  code/PACbioDT.out
    Untracked:  code/PACbioDTitronic.err
    Untracked:  code/PACbioDTitronic.out
    Untracked:  code/Prematureqtl_nominal.err
    Untracked:  code/Prematureqtl_nominal.out
    Untracked:  code/Prematureqtl_permuted.err
    Untracked:  code/Prematureqtl_permuted.out
    Untracked:  code/RBPdisrupt.err
    Untracked:  code/RBPdisrupt.out
    Untracked:  code/RBPdisrupt.sh
    Untracked:  code/README.md
    Untracked:  code/RNABam2BW.err
    Untracked:  code/RNABam2BW.out
    Untracked:  code/RNAseqDTPlotGeneRegions.err
    Untracked:  code/RNAseqDTPlotGeneRegions.out
    Untracked:  code/Randomsplicesite2fasta.py
    Untracked:  code/Rplots.pdf
    Untracked:  code/TESplots100bp.err
    Untracked:  code/TESplots100bp.out
    Untracked:  code/TESplots150bp.err
    Untracked:  code/TESplots150bp.out
    Untracked:  code/TESplots200bp.err
    Untracked:  code/TESplots200bp.out
    Untracked:  code/Tissueclosestannotated.err
    Untracked:  code/Tissueclosestannotated.out
    Untracked:  code/Total_example.err
    Untracked:  code/Total_example.out
    Untracked:  code/Totspec_example.err
    Untracked:  code/Totspec_example.out
    Untracked:  code/Totspec_example.sh
    Untracked:  code/Totspec_exampleTOT.err
    Untracked:  code/Totspec_exampleTOT.out
    Untracked:  code/Totspec_exampleTOT.sh
    Untracked:  code/Untitled
    Untracked:  code/YRI_LCL.vcf.gz
    Untracked:  code/YRI_LCL_chr1.vcf.gz.log
    Untracked:  code/YRI_LCL_chr1.vcf.gz.recode.vcf
    Untracked:  code/annotatedPASregion.err
    Untracked:  code/annotatedPASregion.out
    Untracked:  code/apaQTL_nominalInclusive.sh
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assigntotPeak2Intronicregion.err
    Untracked:  code/assigntotPeak2Intronicregion.out
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bam2bw_5primemost.err
    Untracked:  code/bam2bw_5primemost.out
    Untracked:  code/binary_fileset.log
    Untracked:  code/bothFrac_FC.err
    Untracked:  code/bothFrac_FC.out
    Untracked:  code/callSHscripts.txt
    Untracked:  code/closestannotated.err
    Untracked:  code/closestannotated.out
    Untracked:  code/closestannotatedbyfrac.err
    Untracked:  code/closestannotatedbyfrac.out
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/extactPAS100meanphyloP.py
    Untracked:  code/extractGeneLZfiles.err
    Untracked:  code/extractGeneLZfiles.out
    Untracked:  code/extractGeneLZfiles.sh
    Untracked:  code/extractGeneLZfileseQTLs.err
    Untracked:  code/extractGeneLZfileseQTLs.out
    Untracked:  code/extractGeneLZfileseQTLs.sh
    Untracked:  code/extractPACmeanPhyloP.py
    Untracked:  code/extractPASLZfiles.err
    Untracked:  code/extractPASLZfiles.out
    Untracked:  code/extractPASLZfileseQTLs.err
    Untracked:  code/extractPASLZfileseQTLs.out
    Untracked:  code/extractPhylop50up.py
    Untracked:  code/extractPhylopextra50.py
    Untracked:  code/extractRNApval4lz.py
    Untracked:  code/fixExandUnexeQTL
    Untracked:  code/fixGWAS4Munge.py
    Untracked:  code/fix_randomIntron.py
    Untracked:  code/fixmunge
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.log
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.recode.vcf
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/grouptranscripts.err
    Untracked:  code/grouptranscripts.out
    Untracked:  code/intersectPAS_ssSNPS.err
    Untracked:  code/intersectPAS_ssSNPS.out
    Untracked:  code/intersectVCFPAS.err
    Untracked:  code/intersectVCFPAS.out
    Untracked:  code/liftoverPAShg38to19.err
    Untracked:  code/liftoverPAShg38to19.out
    Untracked:  code/log/
    Untracked:  code/logs/
    Untracked:  code/merge53PRIMEbam.err
    Untracked:  code/merge53PRIMEbam.out
    Untracked:  code/merge53RNAbam.err
    Untracked:  code/merge53prime.sh
    Untracked:  code/merge5RNABam.err
    Untracked:  code/merge5RNABam.out
    Untracked:  code/merge5RNAbam.out
    Untracked:  code/merge5RNAbam.sh
    Untracked:  code/mergeAnno.err
    Untracked:  code/mergeAnno.out
    Untracked:  code/mergeBWnorm.err
    Untracked:  code/mergeBWnorm.out
    Untracked:  code/mergeBamNacent.err
    Untracked:  code/mergeBamNacent.out
    Untracked:  code/mergeRNAbam.err
    Untracked:  code/mergeRNAbam.out
    Untracked:  code/miRNAdisrupt.err
    Untracked:  code/miRNAdisrupt.out
    Untracked:  code/miRNAdisrupt.sh
    Untracked:  code/mnaseDTPlot1stintron.err
    Untracked:  code/mnaseDTPlot1stintron.out
    Untracked:  code/mnaseDTPlot4thintron.err
    Untracked:  code/mnaseDTPlot4thintron.out
    Untracked:  code/netDTPlot4thintron.out
    Untracked:  code/netseqFC.err
    Untracked:  code/netseqFC.out
    Untracked:  code/neyDTPlot4thintron.err
    Untracked:  code/nominavalfortotspec.py
    Untracked:  code/noninalpval4alltot.py
    Untracked:  code/nucspecinE.py
    Untracked:  code/parseALLSSres.py
    Untracked:  code/parseLDRes.py
    Untracked:  code/parseLDres.err
    Untracked:  code/parseLDres.out
    Untracked:  code/parseLDresBothPAS.sh
    Untracked:  code/parseRanodmSSres.py
    Untracked:  code/parseSSres.py
    Untracked:  code/plink.log
    Untracked:  code/prxySNP.err
    Untracked:  code/prxySNP.out
    Untracked:  code/pttFacetBoxplots.err
    Untracked:  code/pttFacetBoxplots.out
    Untracked:  code/qtlFacetBoxplots.err
    Untracked:  code/qtlFacetBoxplots.out
    Untracked:  code/rLD_vcftools.hap.err
    Untracked:  code/riboqtl.err
    Untracked:  code/riboqtl.out
    Untracked:  code/runBestBamID.err
    Untracked:  code/runCorrectNomeqtl.err
    Untracked:  code/runCorrectNomeqtl.out
    Untracked:  code/runFilterLD.err
    Untracked:  code/runFilterLD.out
    Untracked:  code/runFixGWAS4Munge.sh
    Untracked:  code/runHMMpermute.err
    Untracked:  code/runHMMpermute.out
    Untracked:  code/runHMMpermuteeQTLs.err
    Untracked:  code/runHMMpermuteeQTLs.out
    Untracked:  code/runMakeEmpiricaleQTLs.err
    Untracked:  code/runMakeEmpiricaleQTLs.out
    Untracked:  code/runMakeEmpiricaleQTLsunex.err
    Untracked:  code/runMakeEmpiricaleQTLsunex.out
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_DistPAS2Sig_intron.err
    Untracked:  code/run_DistPAS2Sig_intron.out
    Untracked:  code/run_bam2bw.err
    Untracked:  code/run_bam2bw.out
    Untracked:  code/run_bam2bwexta.err
    Untracked:  code/run_bam2bwexta.out
    Untracked:  code/run_dist2sig_randomintron.sh
    Untracked:  code/run_getAPAfromanyeQTL.err
    Untracked:  code/run_getAPAfromanyeQTL.out
    Untracked:  code/run_getApaPval4eQTLs.err
    Untracked:  code/run_getApaPval4eQTLs.out
    Untracked:  code/run_getApaPval4eQTLsunexplained.err
    Untracked:  code/run_getApaPval4eQTLsunexplained.out
    Untracked:  code/run_leafcutter_ds.err
    Untracked:  code/run_leafcutter_ds.out
    Untracked:  code/run_sepgenobychrom.err
    Untracked:  code/run_sepgenobychrom.out
    Untracked:  code/run_sepusage.err
    Untracked:  code/run_sepusage.out
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/run_verifybam128N.err
    Untracked:  code/run_verifybam128N.out
    Untracked:  code/run_verifybam128T.err
    Untracked:  code/run_verifybam128T.out
    Untracked:  code/run_verifybam517N.err
    Untracked:  code/run_verifybam517N.out
    Untracked:  code/run_verifybam517T.err
    Untracked:  code/run_verifybam517T.out
    Untracked:  code/runprxySNP.err
    Untracked:  code/runprxySNP.out
    Untracked:  code/runres2pas.err
    Untracked:  code/runres2pas.out
    Untracked:  code/scripts/
    Untracked:  code/scripts_PAS_500_Lymph/
    Untracked:  code/seqQTLfastq.err
    Untracked:  code/seqQTLfastq.out
    Untracked:  code/seqQTLregion.err
    Untracked:  code/seqQTLregion.out
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  code/sortindexRNABam.err
    Untracked:  code/sortindexRNABam.out
    Untracked:  code/specAPAinE.py
    Untracked:  code/splicesite2fasta.py
    Untracked:  code/subsetAPAnotEorR.py
    Untracked:  code/subsetNootherQTL.py
    Untracked:  code/subsetvcf_SS.err
    Untracked:  code/subsetvcf_SS.out
    Untracked:  code/subsetvcf_noSS.err
    Untracked:  code/subsetvcf_noSS.out
    Untracked:  code/subsetvcf_pas.err
    Untracked:  code/subsetvcf_pas.out
    Untracked:  code/subsetvcf_perm.err
    Untracked:  code/subsetvcf_perm.out
    Untracked:  code/subsetvcf_rand.err
    Untracked:  code/subsetvcf_rand.out
    Untracked:  code/subtract5UTR.err
    Untracked:  code/subtract5UTR.out
    Untracked:  code/subtractExons.err
    Untracked:  code/subtractExons.out
    Untracked:  code/tabixSNPs.err
    Untracked:  code/tabixSNPs.out
    Untracked:  code/test.pdf
    Untracked:  code/testFix.txt
    Untracked:  code/test_verifybam.err
    Untracked:  code/test_verifybam.out
    Untracked:  code/tissuePAS2hg19.sh
    Untracked:  code/totspecinE.py
    Untracked:  code/totspecqtlFacetBoxplots.err
    Untracked:  code/totspecqtlFacetBoxplots.out
    Untracked:  code/totspecqtlFacetBoxplots.sh
    Untracked:  code/totspecqtlFacetBoxplotsTOT.err
    Untracked:  code/totspecqtlFacetBoxplotsTOT.out
    Untracked:  code/totspecqtlFacetBoxplotsTOT.sh
    Untracked:  code/vcf_keepsnps.err
    Untracked:  code/vcf_keepsnps.out
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/zipandtabPhen.err
    Untracked:  code/zipandtabPhen.out
    Untracked:  data/._.DS_Store
    Untracked:  data/._MetaDataSequencing.txt
    Untracked:  data/AnnotatedPAS/
    Untracked:  data/ApaByEgene/
    Untracked:  data/ApaByPgene/
    Untracked:  data/ApaByRgene/
    Untracked:  data/BadLines/
    Untracked:  data/BaseComp/
    Untracked:  data/Battle_pQTL/
    Untracked:  data/CheckSums/
    Untracked:  data/CompareOldandNew/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso/
    Untracked:  data/EncodeRNA/
    Untracked:  data/ExampleQTLPlots/
    Untracked:  data/ExampleQTLPlots_update/
    Untracked:  data/ExpressionIndependentapaQTLs.txt
    Untracked:  data/FiveMergedBW/
    Untracked:  data/FiveMergedBam/
    Untracked:  data/FlaggedPAS/
    Untracked:  data/GWAS_overlap/
    Untracked:  data/Geuvadis/
    Untracked:  data/GeuvadisRNA/
    Untracked:  data/GeuvadiseQTL/
    Untracked:  data/HMMqtls/
    Untracked:  data/LDSR_annotations/
    Untracked:  data/LZ_both/
    Untracked:  data/Li_eQTLs/
    Untracked:  data/NMD/
    Untracked:  data/NascentRNA/
    Untracked:  data/NucSpeceQTLeffect/
    Untracked:  data/PAS/
    Untracked:  data/PAS_postFlag/
    Untracked:  data/PolyA_DB/
    Untracked:  data/PreTerm_pheno/
    Untracked:  data/PrematureQTLNominal/
    Untracked:  data/PrematureQTLPermuted/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/QTLoverlap/
    Untracked:  data/QTLoverlap_inclusive/
    Untracked:  data/QTLoverlap_nonNorm/
    Untracked:  data/README.md
    Untracked:  data/RNAseq/
    Untracked:  data/Reads2UTR/
    Untracked:  data/SNPinSS/
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/TF_motifdisruption/
    Untracked:  data/TSS/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/TissueData/
    Untracked:  data/Version15bp6As/
    Untracked:  data/Version15bp7As/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLNominal_4pc/
    Untracked:  data/apaQTLNominal_inclusive/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLPermuted_4pc/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/assignedPeaks_15Up/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/bothFrac_FC/
    Untracked:  data/bw/
    Untracked:  data/bw_norm/
    Untracked:  data/coloc/
    Untracked:  data/coloc_PM/
    Untracked:  data/eCLip/
    Untracked:  data/eQTL_LZ/
    Untracked:  data/eQTLs/
    Untracked:  data/exampleQTLs/
    Untracked:  data/exosome/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/fourSU/
    Untracked:  data/h3k27ac/
    Untracked:  data/highdiffsiggenes.txt
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/intronRNAratio/
    Untracked:  data/intron_analysis/
    Untracked:  data/locusZoom/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBW_norm/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/miRNAbinding/
    Untracked:  data/molPhenos/
    Untracked:  data/molQTLs/
    Untracked:  data/motifdistrupt/
    Untracked:  data/nPAS/
    Untracked:  data/netseq/
    Untracked:  data/nonNorm_pheno/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/oldPASfiles/
    Untracked:  data/overlapeQTL_try2/
    Untracked:  data/overlapeQTLs/
    Untracked:  data/pQTLoverlap/
    Untracked:  data/pacbio/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/phenotype_inclusivePAS/
    Untracked:  data/phylop/
    Untracked:  data/pttQTL/
    Untracked:  data/pttQTLplots/
    Untracked:  data/sigDiffGenes.txt
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  data/splicesite/
    Untracked:  data/totSpecExampleQTLPlots/
    Untracked:  data/totSpecExampleQTLPlots_tot/
    Untracked:  data/twoMech/
    Untracked:  data/vareQTLvarAPAqtl/
    Untracked:  data/verifyBAM/
    Untracked:  data/verifyBAM_full/
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/._AverageDiffHeatmap.Nuclear.png
    Untracked:  output/._AverageDiffHeatmap.Total.png
    Untracked:  output/._GeneswithAPApotential.png
    Untracked:  output/._GeneswithAPApotentialAllPAS.png
    Untracked:  output/._PASlocation.png
    Untracked:  output/._SignalSitePlot.png
    Untracked:  output/._meanCorrelationPhenotypes.svg
    Untracked:  output/._qqplot_Nuclear_APAperm.png
    Untracked:  output/._qqplot_Nuclear_APAperm_4pc.png
    Untracked:  output/._qqplot_Total_APAperm.png
    Untracked:  output/._qqplot_Total_APAperm_4pc.png
    Untracked:  output/AverageDiffHeatmap.Nuclear.png
    Untracked:  output/AverageDiffHeatmap.Total.png
    Untracked:  output/GeneswithAPApotential.png
    Untracked:  output/GeneswithAPApotentialAllPAS.png
    Untracked:  output/PASlocation.png
    Untracked:  output/SignalSitePlot.png
    Untracked:  output/SignalSitePlotbyLoc.png
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/
    Untracked:  output/meanCorrelationPhenotypes.svg
    Untracked:  output/newnuc.png
    Untracked:  output/newtot.png
    Untracked:  output/oldnuc.png
    Untracked:  output/oldtot.png
    Untracked:  output/qqplot_Nuclear_APAperm.png
    Untracked:  output/qqplot_Nuclear_APAperm_4pc.png
    Untracked:  output/qqplot_Total_APAperm.png
    Untracked:  output/qqplot_Total_APAperm_4pc.png
    Untracked:  run_verifybam517N.err
    Untracked:  run_verifybam517N.out

Unstaged changes:
    Modified:   analysis/NuclearSpecIncludeNotTested.Rmd
    Modified:   analysis/PASdescriptiveplots.Rmd
    Modified:   analysis/Readdistagainstfeatures.Rmd
    Modified:   analysis/TSS.Rmd
    Modified:   analysis/apaQTLoverlap.Rmd
    Modified:   analysis/apabyeQTLstatus.Rmd
    Modified:   analysis/decayAndStability.Rmd
    Modified:   analysis/miRNAdisrupt.Rmd
    Modified:   analysis/nascenttranscription.Rmd
    Modified:   analysis/nucSpecinEQTLs.Rmd
    Modified:   analysis/overlapapaqtlsandeqtls.Rmd
    Modified:   analysis/pQTLexampleplot.Rmd
    Modified:   analysis/reads_graphs.Rmd
    Modified:   analysis/splicesitestrength.Rmd
    Modified:   analysis/version15bpfilter.Rmd
    Modified:   code/DistPAS2Sig.py
    Modified:   code/Script4NuclearQTLexamples.sh
    Modified:   code/Script4TotalQTLexamples.sh
    Modified:   code/apaQTLsnake.err
    Modified:   code/apaqtlfacetboxplots.R
    Modified:   code/environment.yaml
    Modified:   code/run_qtlFacetBoxplots.sh
    Deleted:    code/test.txt
    Deleted:    reads_graphs.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd b93e5d6 brimittleman 2020-03-23 fix sup figs for revision
html 3af0253 brimittleman 2019-09-17 Build site.
Rmd f8cb7b8 brimittleman 2019-09-17 move inclusive, get numbers for paper
html ae9499b brimittleman 2019-09-13 Build site.
Rmd 8311b58 brimittleman 2019-09-13 add histogram for alt figure
html 22541b3 brimittleman 2019-09-06 Build site.
Rmd 5976ed7 brimittleman 2019-09-06 update post new filter
html 15fbb3c brimittleman 2019-07-31 Build site.
Rmd aa1ad85 brimittleman 2019-07-31 add pdf for figrues
html c5bf3fd brimittleman 2019-07-02 Build site.
Rmd 36d86c0 brimittleman 2019-07-02 post LM plot midifications
html 3e79995 brimittleman 2019-06-24 Build site.
Rmd 494ab8a brimittleman 2019-06-24 add diff prop test
html 499e504 brimittleman 2019-06-22 Build site.
Rmd 97e2ea8 brimittleman 2019-06-22 add pie chart
html 6679c95 brimittleman 2019-06-21 Build site.
Rmd 842be25 brimittleman 2019-06-21 fix fif
html 4f2326e brimittleman 2019-06-21 Build site.
Rmd abd1a73 brimittleman 2019-06-21 fix figures
html ae5c5a1 brimittleman 2019-06-21 Build site.
Rmd 0d606c1 brimittleman 2019-06-21 fix figures
html 2d1a80c brimittleman 2019-06-16 Build site.
Rmd 8944f90 brimittleman 2019-06-16 fix effect size header
html 9d0950c brimittleman 2019-06-13 Build site.
Rmd 17955ab brimittleman 2019-06-13 fix big bug
html b6ed10c brimittleman 2019-05-22 Build site.
Rmd 312d7d7 brimittleman 2019-05-22 add non facet plot
html bf3a1e0 brimittleman 2019-05-14 Build site.
Rmd 77ca26a brimittleman 2019-05-14 results by logef
html 760b297 brimittleman 2019-05-14 Build site.
Rmd 4c10e8f brimittleman 2019-05-14 add dist to PAS plot
html d0aa6a3 brimittleman 2019-05-13 Build site.
Rmd f514b6e brimittleman 2019-05-13 add combined plot
html 07c9125 brimittleman 2019-05-13 Build site.
Rmd 981ac33 brimittleman 2019-05-13 add location of highly used
html c561b14 brimittleman 2019-05-06 Build site.
Rmd 1d8a0a3 brimittleman 2019-05-06 add res
html 60093ce brimittleman 2019-05-02 Build site.
Rmd 24c2ceb brimittleman 2019-05-02 add diff iso

library(workflowr)
This is workflowr version 1.6.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ──────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(reshape2)

Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':

    smiths

In this analysis I wil use leafcutter to call PAS with differential ussage between fractions.

Prepare annotation

I first filter the annotated peak SAF file for peaks passing the 5% coverage in either fraction.

python makeSAFbothfrac5perc.py

Peak quantification

mkdir bothFrac_FC

Run feature counts with these peaks with both fractions:

sbatch bothFrac_FC.sh

Fix the header:

python fixFChead_bothfrac.py ../data/bothFrac_FC/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fc ../data/bothFrac_FC/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.fc

Remove location demoniaiton:

Prepare leafcutter phenotype

mkdir ../data/DiffIso
python fc2leafphen.py

Fix pheno to remove location:

python removeloc_pheno.py ../data/DiffIso/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.forLC.fc ../data/DiffIso/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.forLC_noloc.fc
python subset_diffisopheno.py 1
python subset_diffisopheno.py 2
python subset_diffisopheno.py 3
python subset_diffisopheno.py 4
python subset_diffisopheno.py 5
python subset_diffisopheno.py 6
python subset_diffisopheno.py 7
python subset_diffisopheno.py 8
python subset_diffisopheno.py 9
python subset_diffisopheno.py 10
python subset_diffisopheno.py 11
python subset_diffisopheno.py 12
python subset_diffisopheno.py 13
python subset_diffisopheno.py 14
python subset_diffisopheno.py 15
python subset_diffisopheno.py 16
python subset_diffisopheno.py 18
python subset_diffisopheno.py 19
python subset_diffisopheno.py 20
python subset_diffisopheno.py 21
python subset_diffisopheno.py 22

Make the sample groups file:

python LC_samplegroups.py 

Run leafcutter

The leafcutter environment is not in the three-prime-seq environment. Make sure leafcutter is installed and working.

sbatch run_leafcutterDiffIso.sh

Rscript /project2/gilad/briana/davidaknowles-leafcutter-c3d9474/scripts/leafcutter_ds.R –num_threads 4 ../data/DiffIso/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.forLC.fc_22.txt ../data/bothFrac_FC/sample_groups.txt -o ../data/DiffIso/TN_diff_isoform_chr22.txt

Concatinate results:

awk '{if(NR>1)print}' ../data/DiffIso/TN_diff_isoform_chr*.txt_effect_sizes.txt > ../data/DiffIso/TN_diff_isoform_allChrom.txt_effect_sizes.txt


awk '{if(NR>1)print}' ../data/DiffIso/TN_diff_isoform_chr*.txt_cluster_significance.txt > ../data/DiffIso/TN_diff_isoform_AllChrom_cluster_significance.txt

Evaluate results

Significant clusters

sig=read.table("../data/DiffIso/TN_diff_isoform_AllChrom_cluster_significance.txt",sep="\t" ,col.names = c('status','loglr','df','p','cluster','p.adjust'),stringsAsFactors = F) %>% filter(status=="Success") 

sig$p.adjust=as.numeric(as.character(sig$p.adjust))
qqplot(-log10(runif(nrow(sig))), -log10(sig$p.adjust),ylab="-log10 Total Adjusted Leafcutter pvalue", xlab="-log 10 Uniform expectation", main="Leafcutter differencial isoform analysis between fractions")
abline(0,1)

Version Author Date
22541b3 brimittleman 2019-09-06
9d0950c brimittleman 2019-06-13
c561b14 brimittleman 2019-05-06
tested_genes=nrow(sig)
tested_genes
[1] 9221
sig_genes=sig %>% filter(p.adjust<.05)
number_sig_genes=nrow(sig_genes)
number_sig_genes
[1] 6946
sig_genesonly=sig_genes %>% separate(cluster,into=c("chrom", "geneName"), sep = ":") %>% dplyr::select(geneName)

write.table(sig_genesonly, file="../data/sigDiffGenes.txt", col.names = T, row.names = F, quote = F)

Effect sizes

effectsize=read.table("../data/DiffIso/TN_diff_isoform_allChrom.txt_effect_sizes.txt", stringsAsFactors = F, col.names=c('intron',  'logef' ,'Nuclear', 'Total','deltaPAU')) %>% filter(intron != "intron")

write.table(effectsize,file="../data/DiffIso/EffectSizes.txt", quote = F, col.names = T, row.names = F)

effectsize$deltaPAU=as.numeric(as.character(effectsize$deltaPAU))
effectsize$logef=as.numeric(as.character(effectsize$logef))

Plot delta PAU:

plot(sort(effectsize$deltaPAU),main="Leafcutter delta PAU", ylab="Delta PAU", xlab="PAS Index")

Version Author Date
22541b3 brimittleman 2019-09-06
9d0950c brimittleman 2019-06-13
c561b14 brimittleman 2019-05-06

Filter PAU > .2

effectsize_deltaPAU= effectsize %>% filter(abs(deltaPAU) > .2) 
nrow(effectsize_deltaPAU)
[1] 1764
effectSize_highdiffGenes=effectsize_deltaPAU %>% separate(intron, into=c("chrom", "start", "end", "GeneName"), sep=":") %>% dplyr::select(GeneName) %>% unique()


write.table(effectSize_highdiffGenes, file="../data/highdiffsiggenes.txt", col.names = F, row.names = F, quote = F)

Genes in this set:

effectsize_deltaPAU_Genes= effectsize_deltaPAU %>% separate(intron, into=c("chrom", "start", "end","gene"),sep=":") %>% group_by(gene) %>% summarise(nperGene=n()) 

nrow(effectsize_deltaPAU_Genes)
[1] 1334

Filter >.2 in

effectsize_deltaPAU_nuclear= effectsize_deltaPAU %>% filter(deltaPAU < -0.2)

#write out at bed
#need strand info
PAS=read.table("../data/PAS/APAPAS_GeneLocAnno.5perc.bed", stringsAsFactors = F,col.names = c("chrom", "start", "end", "peak", "score", "strand") )%>% separate(peak, into=c("peaknum","peakID"), sep=":") %>% separate(peakID, into=c("gene", "loc"), sep="_") %>% dplyr::select(gene, strand) %>% unique()
effectsize_deltaPAU_nuclear_bed=effectsize_deltaPAU_nuclear %>% separate(intron, into=c("chr", "peakStart", "peakEnd", "gene"), sep=":") %>% inner_join(PAS, by="gene")  %>% mutate(PASstart=ifelse(strand=="+", as.integer(peakEnd)-1, as.integer(peakStart)+1)) %>% mutate(PASend=ifelse(strand=="+", as.integer(peakEnd), as.integer(peakStart))) %>% mutate(score=".") %>%  dplyr::select(chr, peakStart, peakEnd, gene, score, strand) 

write.table(effectsize_deltaPAU_nuclear_bed, file="../data/PAS/UsedMoreNuclearPAU2.bed", col.names = F, row.names = F, quote = F,sep = "\t")

Filter >.2 in Total:

effectsize_deltaPAU_total= effectsize_deltaPAU %>% filter(deltaPAU > 0.2)

effectsize_deltaPAU_total_bed=effectsize_deltaPAU_total %>% separate(intron, into=c("chr", "peakStart", "peakEnd", "gene"), sep=":") %>% inner_join(PAS, by="gene")  %>% mutate(PASstart=ifelse(strand=="+", as.integer(peakEnd)-1, as.integer(peakStart)+1)) %>% mutate(PASend=ifelse(strand=="+", as.integer(peakEnd), as.integer(peakStart))) %>% mutate(score=".") %>%  dplyr::select(chr, peakStart, peakEnd, gene, score, strand) 

write.table(effectsize_deltaPAU_total_bed, file="../data/PAS/UsedMoreTotalPAU2.bed", col.names = F, row.names = F, quote = F,sep="\t")

Sort the files:

sort -k1,1 -k2,2n ../data/PAS/UsedMoreTotalPAU2.bed > ../data/PAS/UsedMoreTotalPAU2.sort.bed
sort -k1,1 -k2,2n ../data/PAS/UsedMoreNuclearPAU2.bed > ../data/PAS/UsedMoreNuclearPAU2.sort.bed

Location of high >PAU

Total:

Pull in location information for each PAS:

PAS=read.table("../data/peaks_5perc/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.SAF",stringsAsFactors = F,header = T) %>% separate(GeneID, into=c("num", "chr", "start", "end", "strand", "geneID"), sep=":") %>% separate(geneID, into=c("gene", "loc"),sep="_") %>%  mutate(intron=paste("chr", Chr, ":", Start, ":", End, ":", gene,sep="")) %>% select(intron, loc)
effectsize_deltaPAU_total_loc=effectsize_deltaPAU_total %>% inner_join(PAS, by="intron") 


ggplot(effectsize_deltaPAU_total_loc,aes(x=loc)) + geom_histogram(stat="count") + labs(title="Location of Total peaks >.2 PAU") 
Warning: Ignoring unknown parameters: binwidth, bins, pad

Version Author Date
22541b3 brimittleman 2019-09-06
9d0950c brimittleman 2019-06-13
07c9125 brimittleman 2019-05-13

Nuclear:

effectsize_deltaPAU_nuclear_loc=effectsize_deltaPAU_nuclear %>% inner_join(PAS, by="intron") 


ggplot(effectsize_deltaPAU_nuclear_loc,aes(x=loc)) + geom_histogram(stat="count") + labs(title="Location of Nuclear peaks >.2 PAU")
Warning: Ignoring unknown parameters: binwidth, bins, pad

Version Author Date
22541b3 brimittleman 2019-09-06
9d0950c brimittleman 2019-06-13
effectsize_deltaPAU_nuclear_loc %>% separate(intron, into=c("chr", "start", "end","gene"),sep=":")  %>%  group_by(gene) %>% summarize(n=n()) %>% nrow()
[1] 585
effectsize_deltaPAU_nuclear_loc %>% filter(Total <.1) %>% nrow()
[1] 134

I will want to look at proportions. I need to know how many peaks are in each location:

PAS_loc =PAS%>% group_by(loc) %>% summarise(nloc=n())
effectsize_deltaPAU_total_locProp=effectsize_deltaPAU_total_loc %>% group_by(loc) %>% summarise(nloctotal=n()) 
effectsize_deltaPAU_nuclear_locProp=effectsize_deltaPAU_nuclear_loc %>% group_by(loc) %>% summarise(nlocnuclear=n()) 

effectsize_deltaPAUProp_tot=effectsize_deltaPAU_total_locProp %>% inner_join(PAS_loc, by="loc") %>% mutate(Proportion_tot=nloctotal/nloc)

effectsize_deltaPAUProp_nuc=effectsize_deltaPAU_nuclear_locProp %>% inner_join(PAS_loc, by="loc") %>% mutate(Proportion_nuc=nlocnuclear/nloc)
ggplot(effectsize_deltaPAUProp_tot, aes(x=loc, y=Proportion_tot)) + geom_bar(stat="identity") + labs(y="Proportion of all called PAS", title="Location of high Total used PAS")

Version Author Date
22541b3 brimittleman 2019-09-06
9d0950c brimittleman 2019-06-13
07c9125 brimittleman 2019-05-13
ggplot(effectsize_deltaPAUProp_nuc, aes(x=loc, y=Proportion_nuc)) + geom_bar(stat="identity") + labs(y="Proportion of all called PAS", title="Location of high nuclear used PAS")

Version Author Date
22541b3 brimittleman 2019-09-06
9d0950c brimittleman 2019-06-13

Merge to 1 figure:

effectsize_deltaPAUProp_both= effectsize_deltaPAUProp_nuc %>% inner_join(effectsize_deltaPAUProp_tot, by=c("loc","nloc")) %>% dplyr::rename(Nuclear=Proportion_nuc, Total=Proportion_tot) %>% select(loc, Nuclear, Total) 
effectsize_deltaPAUProp_both_melt= effectsize_deltaPAUProp_both %>% melt(id.vars="loc", variable.name="Fraction", value.name = "Proportion") 
effectsize_deltaPAUProp_both_melt$Fraction=as.character(effectsize_deltaPAUProp_both_melt$Fraction)
ggplot(effectsize_deltaPAUProp_both_melt, aes(x=loc, y=Proportion, by=Fraction, fill=Fraction)) + geom_bar(stat="identity", position="dodge") + scale_fill_manual(values=c("deepskyblue3","darkviolet")) + labs(title="Proportion of PAS differential used by location",x="") +scale_x_discrete(labels = c('Coding','5kb downstream','Intronic',"3' UTR", "5' UTR")) +theme(axis.text.x = element_text(angle = 90, hjust = 1)) +  theme(legend.position = c(0.1,.9), legend.direction = "horizontal") +  theme(panel.background = element_blank()) 

Version Author Date
22541b3 brimittleman 2019-09-06
6679c95 brimittleman 2019-06-21
4f2326e brimittleman 2019-06-21
ae5c5a1 brimittleman 2019-06-21
9d0950c brimittleman 2019-06-13
effectsize_deltaPAU_total_locProp
# A tibble: 5 x 2
  loc    nloctotal
  <chr>      <int>
1 cds           30
2 end           63
3 intron       126
4 utr3         916
5 utr5          38
sum(effectsize_deltaPAU_total_locProp$nloctotal)
[1] 1173
effectsize_deltaPAU_nuclear_locProp
# A tibble: 5 x 2
  loc    nlocnuclear
  <chr>        <int>
1 cds              9
2 end             83
3 intron         387
4 utr3           101
5 utr5            11
sum(effectsize_deltaPAU_nuclear_locProp$nlocnuclear)
[1] 591
effectsize_deltaPAUProp_both_melt_sm=effectsize_deltaPAUProp_both_melt %>% filter(loc=="intron" | loc=="utr3")


ggplot(effectsize_deltaPAUProp_both_melt_sm, aes(x=loc, y=Proportion, by=Fraction, fill=Fraction)) + geom_bar(stat="identity", position="dodge") + scale_fill_manual(values=c("deepskyblue3","darkviolet"), labels=c("Nuclear", "Total mRNA")) + labs(title="Proportion of Intronic and 3' UTR \nPAS Differencially Used",x="", y="Proportion of PAS") +scale_x_discrete(labels = c('Intronic PAS',"3' UTR PAS")) +theme(axis.text.x = element_text(angle = 45, hjust = 1)) +  theme(legend.position ="bottom", legend.direction = "horizontal") +  theme(panel.background = element_blank(),text = element_text(size=16), plot.title = element_text(size = 16, face = "bold"),axis.text.x = element_text(size=14),axis.text.y = element_text(size=14))

Version Author Date
22541b3 brimittleman 2019-09-06
15fbb3c brimittleman 2019-07-31
3e79995 brimittleman 2019-06-24
9d0950c brimittleman 2019-06-13
760b297 brimittleman 2019-05-14
effectsize_deltaPAUProp_both_melt_sm
     loc Fraction  Proportion
1 intron  Nuclear 0.030250918
2   utr3  Nuclear 0.004996537
3 intron    Total 0.009849136
4   utr3    Total 0.045315128
#intronic
prop.test(x=c(387,126), n=c(591,1173),alternative = "greater")

    2-sample test for equality of proportions with continuity
    correction

data:  c(387, 126) out of c(591, 1173)
X-squared = 568.34, df = 1, p-value < 2.2e-16
alternative hypothesis: greater
95 percent confidence interval:
 0.5106946 1.0000000
sample estimates:
   prop 1    prop 2 
0.6548223 0.1074169 
#3' utr
prop.test(x=c(101,916), n=c(591,1173),alternative = "less")

    2-sample test for equality of proportions with continuity
    correction

data:  c(101, 916) out of c(591, 1173)
X-squared = 596.48, df = 1, p-value < 2.2e-16
alternative hypothesis: less
95 percent confidence interval:
 -1.0000000 -0.5764348
sample estimates:
   prop 1    prop 2 
0.1708968 0.7809037 

More differentiall used in total. this makes sense because there are more used peaks in the nuclear which evens out the distribution of the ratios.

Stratify by different \(\Delta\) PAU

I want to create a data frame that has the location proportion distribution based on different \(\Delta\) PAU. 0-.1 .1-.2 .2-.3 .3-.4 .4-.5 >.5

First I will seperate the total and nuclear but the sign of the \(\Delta\) PAU.

colnames(effectsize)=c("intron", "logef","Nuclear", "Total", "deltaPAU")
Total_dpau= effectsize %>% filter(deltaPAU > 0) %>% inner_join(PAS, by="intron") %>% select(-logef, -Nuclear,-Total) %>%  mutate(fraction="Total", PAU_Cat=ifelse(deltaPAU <.1, "<.1", ifelse(deltaPAU >=.1 & deltaPAU <.2, "<.2", ifelse(deltaPAU >=.2 & deltaPAU <.3, "<.3", ifelse(deltaPAU >=.3 & deltaPAU <.4, "<.4", "<.5"))))) 

Nuclear_dpau= effectsize %>% filter(deltaPAU <0) %>% inner_join(PAS, by="intron") %>% select(-logef,-Nuclear,-Total) %>% mutate(fraction="Nuclear", PAU_Cat=ifelse(deltaPAU >-.1, "<.1", ifelse(deltaPAU <=-.1 & deltaPAU > -.2, "<.2", ifelse(deltaPAU <=-.2 & deltaPAU >-.3, "<.3", ifelse(deltaPAU <=-.3 & deltaPAU >-.4, "<.4", "<.5")))))

Merge these together to start grouping:

allPAU=as.data.frame(rbind(Total_dpau, Nuclear_dpau)) %>% group_by(fraction, PAU_Cat, loc ) %>% summarise(nperLoc=n()) %>% full_join(PAS_loc, by ="loc") %>% mutate(Prop=nperLoc/nloc)

Plot it:

ggplot(allPAU, aes(x=loc,y=Prop, group=fraction, fill=fraction)) + geom_bar(stat="identity", position = "dodge") + facet_wrap(~PAU_Cat)+ scale_fill_manual(values=c("deepskyblue3","darkviolet")) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title="Proportion of PAS by location and delta PAU")

Version Author Date
22541b3 brimittleman 2019-09-06
3e79995 brimittleman 2019-06-24
allPAU_remove.1= allPAU %>% filter(PAU_Cat != "<.1")

ggplot(allPAU_remove.1, aes(x=loc,y=Prop, group=fraction, fill=fraction)) + geom_bar(stat="identity", position = "dodge") + facet_wrap(~PAU_Cat)+ scale_fill_manual(values=c("deepskyblue3","darkviolet")) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title="Proportion of PAS by location and delta PAU")

Version Author Date
22541b3 brimittleman 2019-09-06
3e79995 brimittleman 2019-06-24
9d0950c brimittleman 2019-06-13
760b297 brimittleman 2019-05-14

Proportion within group:

allPAU_ingroup= allPAU %>% mutate(nCat=sum(nperLoc),proppercat=nperLoc/nCat)

ggplot(allPAU_ingroup, aes(x=loc,y=proppercat, group=fraction, fill=fraction)) + geom_bar(stat="identity", position = "dodge") + facet_wrap(~PAU_Cat)+ scale_fill_manual(values=c("deepskyblue3","darkviolet")) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + labs(title="Proportion of PAS by location and delta PAU")

Version Author Date
22541b3 brimittleman 2019-09-06
3e79995 brimittleman 2019-06-24
9d0950c brimittleman 2019-06-13

Distance to TSS:

I need to pull in the TSS information so I can look at the distance between the differentially used peaks and by distance .

tss=read.table("../../genome_anotation_data/refseq.ProteinCoding.bed",col.names = c("chrom", "start", "end", "gene", "score", "strand") ,stringsAsFactors = F) %>% mutate(TSS= ifelse(strand=="+", start, end)) %>% select(gene, TSS, strand)

Seperate effect size introns:

PAS base for + strand is end, PAS for neg stand in -

effectsize_TSS= effectsize %>% separate(intron, into=c("chrom", "start", "end", "gene"),sep=":") %>% mutate(fraction=ifelse(deltaPAU < 0, "nuclear", "total")) %>% inner_join(tss, by="gene") %>% mutate(dist2PAS=ifelse(strand=="+", as.numeric(end)-as.numeric(TSS), as.numeric(TSS)-as.numeric(start))) 

effectsize_TSS_tot= effectsize_TSS %>% filter(fraction=="total") %>% mutate( PAU_Cat=ifelse(deltaPAU <.1, "<.1", ifelse(deltaPAU >=.1 & deltaPAU <.2, "<.2", ifelse(deltaPAU >=.2 & deltaPAU <.3, "<.3", ifelse(deltaPAU >=.3 & deltaPAU <.4, "<.4", "<.5"))))) 


effectsize_TSS_nuc=effectsize_TSS %>% filter(fraction=="nuclear") %>% mutate( PAU_Cat=ifelse(deltaPAU >-.1, "<.1", ifelse(deltaPAU <=-.1 & deltaPAU > -.2, "<.2", ifelse(deltaPAU <=-.2 & deltaPAU >-.3, "<.3", ifelse(deltaPAU <=-.3 & deltaPAU >-.4, "<.4", "<.5")))))


effectsize_TSS_cat=as.data.frame(rbind(effectsize_TSS_tot, effectsize_TSS_nuc)) %>% filter(dist2PAS >0)
ggplot(effectsize_TSS_cat, aes(x=log10(dist2PAS), by=fraction, fill=fraction))+ geom_density(alpha=.4) + facet_grid(~PAU_Cat) + labs(title="Distance to TSS for differentialy used PAS")+scale_fill_manual(values=c("deepskyblue3","darkviolet")) 

Version Author Date
22541b3 brimittleman 2019-09-06
3e79995 brimittleman 2019-06-24
9d0950c brimittleman 2019-06-13

By length of gene

length=read.table("../../genome_anotation_data/refseq.ProteinCoding.bed",col.names = c("chrom", "start", "end", "gene", "score", "strand") ,stringsAsFactors = F) %>% mutate(length=abs(end-start)) %>%  mutate(TSS= ifelse(strand=="+", start, end)) %>% select(gene, length,TSS, strand)
effectsize_length= effectsize %>% separate(intron, into=c("chrom", "start", "end", "gene"),sep=":") %>% mutate(fraction=ifelse(deltaPAU < 0, "nuclear", "total")) %>% inner_join(length, by="gene") %>% mutate(PercLength=ifelse(strand=="+", ((as.numeric(end)-as.numeric(TSS))/as.numeric(length)), (1-(as.numeric(start)-as.numeric(TSS))/as.numeric(length)))) 

effectsize_length_tot= effectsize_length %>% filter(fraction=="total") %>% mutate( PAU_Cat=ifelse(deltaPAU <.1, "<.1", ifelse(deltaPAU >=.1 & deltaPAU <.2, "<.2", ifelse(deltaPAU >=.2 & deltaPAU <.3, "<.3", ifelse(deltaPAU >=.3 & deltaPAU <.4, "<.4", "<.5"))))) 


effectsize_length_nuc=effectsize_length %>% filter(fraction=="nuclear") %>% mutate( PAU_Cat=ifelse(deltaPAU >-.1, "<.1", ifelse(deltaPAU <=-.1 & deltaPAU > -.2, "<.2", ifelse(deltaPAU <=-.2 & deltaPAU >-.3, "<.3", ifelse(deltaPAU <=-.3 & deltaPAU >-.4, "<.4", "<.5")))))


effectsize_length_cat=as.data.frame(rbind(effectsize_length_tot, effectsize_length_nuc)) %>% filter(PercLength<=1 & PercLength >0)

effectsize_length_catall=as.data.frame(rbind(effectsize_length_tot, effectsize_length_nuc)) 
ggplot(effectsize_length_cat, aes(x=PercLength, by=fraction, fill=fraction))+ geom_histogram(alpha=.4,bins=10) + facet_grid(~PAU_Cat) + labs(title="Location of differentially used PAS within a gene body ")+scale_fill_manual(values=c("deepskyblue3","darkviolet")) 

Version Author Date
22541b3 brimittleman 2019-09-06
3e79995 brimittleman 2019-06-24
6679c95 brimittleman 2019-06-21
4f2326e brimittleman 2019-06-21
ae5c5a1 brimittleman 2019-06-21
9d0950c brimittleman 2019-06-13
summary(effectsize_length_catall$PercLength)
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-16763.99      0.89      1.04     22.93      1.91  86510.07 
summary(effectsize$logef)
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-2.241524 -0.319633 -0.006858  0.000000  0.329087  2.456682 
ggplot(effectsize_length_cat, aes(x=PercLength, by=fraction, fill=fraction))+ geom_histogram(bins=50)  + labs(title="Location of differentially used PAS \nwithin a gene body", fill="Fraction", y="Number of PAS", x="Percent of Gene Length")+scale_fill_manual(values=c("deepskyblue3","darkviolet"),labels = c("Nuclear", "Total"))+ theme(legend.position = c(0.1,.9), legend.direction = "horizontal")+  theme(panel.background = element_blank())

Version Author Date
22541b3 brimittleman 2019-09-06
3e79995 brimittleman 2019-06-24
densitylocdifuse=ggplot(effectsize_length_cat, aes(x=PercLength, by=fraction, fill=fraction))+ geom_density(alpha=.75)  + labs(title="Location of differentially used PAS \nwithin a gene body", fill="Fraction", x="Percent of Gene Length")+scale_fill_manual(values=c("deepskyblue3","darkviolet"),labels = c("Nuclear", "Total"))+ theme(legend.position = "bottom", legend.direction = "horizontal")+  theme(panel.background = element_blank(),text = element_text(size=16), plot.title = element_text(size = 20, face = "bold"))

densitylocdifuse

Version Author Date
22541b3 brimittleman 2019-09-06
15fbb3c brimittleman 2019-07-31
c5bf3fd brimittleman 2019-07-02
3e79995 brimittleman 2019-06-24

Diff iso gene proportion:

genes_sig=sig %>% separate(cluster,into=c("chr", "gene"), sep=":") %>% group_by(gene) %>% summarise(n=n()) %>% nrow
genes_detlapau= effectSize_highdiffGenes %>% nrow()
testedgenes=read.table("../data/DiffIso/APApeaks.ALLChrom.Filtered.Named.GeneLocAnnoPARSED.5percCov.bothfrac.fixed.forLC.fc",header = T, stringsAsFactors = F) %>% rownames_to_column("ID") %>% select(ID)%>% separate(ID, into=c("chr", "start", "end", "geneID"),sep=":") %>% separate(geneID, into=c("gene", "loc"),sep="_")  %>% group_by(gene) %>% summarise(n=n()) %>% nrow()
notsig=testedgenes-genes_sig
sighothighpau=genes_sig-genes_detlapau

cat=c("NotSig", "SigNotHighPAU", "SigandHighPAU")
values=c(unlist(notsig),unlist(sighothighpau),unlist(genes_detlapau))

difiso_df=as.data.frame(cbind(cat, values)) 
difiso_df$values=as.numeric(as.character(difiso_df$values))
difiso_df=difiso_df%>% mutate(proportion=values/testedgenes)


ggplot(difiso_df, aes(x="",y=proportion, fill=cat)) + geom_bar(stat="identity")+geom_text(aes(label=values))

Version Author Date
22541b3 brimittleman 2019-09-06
c5bf3fd brimittleman 2019-07-02
3e79995 brimittleman 2019-06-24
slices <- c(notsig, sighothighpau,genes_detlapau)
lbls <- c("No Sig PAS", "At least 1 \nSig PAS", "At least 1 Sig PAS\n High Delta PAU")
pct <- round(slices/sum(slices)*100)
lbls <- paste(lbls, pct, sep="\n   ") # add percents to labels 
lbls <- paste(lbls,"%",sep="") # ad % to labels 
pie(slices, labels = lbls,col=c("Azure2", "Aquamarine1","Darkslateblue"))

Version Author Date
22541b3 brimittleman 2019-09-06
c5bf3fd brimittleman 2019-07-02

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] reshape2_1.4.3  forcats_0.3.0   stringr_1.3.1   dplyr_0.8.0.1  
 [5] purrr_0.3.2     readr_1.3.1     tidyr_0.8.3     tibble_2.1.1   
 [9] ggplot2_3.1.1   tidyverse_1.2.1 workflowr_1.6.0

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5 haven_1.1.2      lattice_0.20-38  colorspace_1.3-2
 [5] generics_0.0.2   htmltools_0.3.6  yaml_2.2.0       utf8_1.1.4      
 [9] rlang_0.4.0      later_0.7.5      pillar_1.3.1     glue_1.3.0      
[13] withr_2.1.2      modelr_0.1.2     readxl_1.1.0     plyr_1.8.4      
[17] munsell_0.5.0    gtable_0.2.0     cellranger_1.1.0 rvest_0.3.2     
[21] evaluate_0.12    labeling_0.3     knitr_1.20       httpuv_1.4.5    
[25] fansi_0.4.0      broom_0.5.1      Rcpp_1.0.2       promises_1.0.1  
[29] scales_1.0.0     backports_1.1.2  jsonlite_1.6     fs_1.3.1        
[33] hms_0.4.2        digest_0.6.18    stringi_1.2.4    grid_3.5.1      
[37] rprojroot_1.3-2  cli_1.1.0        tools_3.5.1      magrittr_1.5    
[41] lazyeval_0.2.1   crayon_1.3.4     whisker_0.3-2    pkgconfig_2.0.2 
[45] xml2_1.2.0       lubridate_1.7.4  assertthat_0.2.0 rmarkdown_1.10  
[49] httr_1.3.1       rstudioapi_0.10  R6_2.3.0         nlme_3.1-137    
[53] git2r_0.26.1     compiler_3.5.1