Last updated: 2020-02-13
Checks: 7 0
Knit directory: apaQTL/analysis/ 
This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated. 
 Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/ProSeq/
    Ignored:    output/.DS_Store
Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  @
    Untracked:  GEO_brimittleman/
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm.allChrom
    Untracked:  analysis/APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm.allChrom
    Untracked:  analysis/QTLexampleplots.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  analysis/eQTLoverlap.Rmd
    Untracked:  analysis/interpret verify bam.Rmd
    Untracked:  analysis/interpret_verifybam.Rmd
    Untracked:  analysis/mergeRNA.Rmd
    Untracked:  analysis/oldstuffNotNeeded.Rmd
    Untracked:  analysis/remove_badlines.Rmd
    Untracked:  analysis/totSpecInNuclear.Rmd
    Untracked:  analysis/totSpecIncludenotTested.Rmd
    Untracked:  analysis/totalspec.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  checksumsfastq.txt.gz
    Untracked:  code/.NascentRNAdtPlotFirstintronicPAS.sh.swp
    Untracked:  code/._ApaQTL_nominalNonnorm.sh
    Untracked:  code/._BothFracDTPlotGeneRegions.sh
    Untracked:  code/._BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/._DistPAS2Sig_RandomIntron.py
    Untracked:  code/._EandPqtl_perm.sh
    Untracked:  code/._EandPqtls.sh
    Untracked:  code/._FC_NucintornUpandDown.sh
    Untracked:  code/._FC_UTR.sh
    Untracked:  code/._FC_intornUpandDownsteamPAS.sh
    Untracked:  code/._FC_nascentseq.sh
    Untracked:  code/._FC_newPeaks_olddata.sh
    Untracked:  code/._HMMpermuteTotal.py
    Untracked:  code/._HmmPermute.py
    Untracked:  code/._IntronicPASDT.sh
    Untracked:  code/._LC_samplegroups.py
    Untracked:  code/._LD_qtl.sh
    Untracked:  code/._LD_snpsproxy.sh
    Untracked:  code/._MapAllRBP.sh
    Untracked:  code/._NascentRNAdtPlot.sh
    Untracked:  code/._NascentRNAdtPlot3UTRPAS.sh
    Untracked:  code/._NascentRNAdtPlotExcludeFirstintronicPAS.sh
    Untracked:  code/._NascentRNAdtPlotNucPAS.sh
    Untracked:  code/._NascentRNAdtPlotTotPAS.sh
    Untracked:  code/._NascentRNAdtPlotintronicPAS.sh
    Untracked:  code/._NascnetRNAdtPlotPAS.sh
    Untracked:  code/._NetSeq_fourthintronDT.sh
    Untracked:  code/._NomResfromPASSNP.py
    Untracked:  code/._NuclearPAS_5per.bed.py
    Untracked:  code/._NuclearandRNA5samp_dtplots.sh
    Untracked:  code/._PTTfacetboxplots.R
    Untracked:  code/._PrematureQTLNominal.sh
    Untracked:  code/._PrematureQTLPermuted.sh
    Untracked:  code/._QTL2bed.py
    Untracked:  code/._QTL2bed_withstrand.py
    Untracked:  code/._RBPdisrupt.sh
    Untracked:  code/._RNAbam2bw.sh
    Untracked:  code/._RNAseqDTplot.sh
    Untracked:  code/._Rplots.pdf
    Untracked:  code/._RunRes2PAS.sh
    Untracked:  code/._SAF215upbed.py
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._TESplots100bp.sh
    Untracked:  code/._TESplots150bp.sh
    Untracked:  code/._TESplots200bp.sh
    Untracked:  code/._TotalPAS_5perc.bed.py
    Untracked:  code/._Untitled
    Untracked:  code/._ZipandTabPheno.sh
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._allNucSpecQTLine.py
    Untracked:  code/._allNucSpecfromNonNorm.py
    Untracked:  code/._annotatePacBioPASregion.sh
    Untracked:  code/._annotatedPAS2bed.py
    Untracked:  code/._apaInPandE.py
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTLCorrectpval_6or7a.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_nominalInclusive.sh
    Untracked:  code/._apaQTL_nominalv67.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._apaQTL_permuted_test6A7A.sh
    Untracked:  code/._apainRibo.py
    Untracked:  code/._assignNucIntonpeak2intronlocs.sh
    Untracked:  code/._assignTotIntronpeak2intronlocs.sh
    Untracked:  code/._bam2BW_5primemost.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._bothFracDTplot1stintron.sh
    Untracked:  code/._bothFracDTplot4thintron.sh
    Untracked:  code/._bothFrac_FC.sh
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._changeRibonomQTLres2genename.py
    Untracked:  code/._changenomQTLres2geneName.py
    Untracked:  code/._chooseAnno2PAS_pacbio.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._closestannotated.sh
    Untracked:  code/._closestannotated_byfrac.sh
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._codingdms2bed.py
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNominal2SNPLOC.py
    Untracked:  code/._convertNominal2SNPloc2Versions.py
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._correctNomeqtl.R
    Untracked:  code/._createPlinkSampfile.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._eQTL_switch2snploc.py
    Untracked:  code/._eQTLgenestestedapa.py
    Untracked:  code/._encodeRNADTplots.sh
    Untracked:  code/._extactPAS100meanphyloP.py
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._extractPACmeanPhyloP.py
    Untracked:  code/._extractPhylop50up.py
    Untracked:  code/._extractPhylopextra50.py
    Untracked:  code/._extractseqfromqtlfastq.py
    Untracked:  code/._fc2leafphen.py
    Untracked:  code/._fc_filteredPAS6and7As.sh
    Untracked:  code/._fifteenBPupstreamPAS.py
    Untracked:  code/._fiftyBPupstreamPAS.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterLDsnps.py
    Untracked:  code/._filterMPPAS.py
    Untracked:  code/._filterMPPAS_15.py
    Untracked:  code/._filterMPPAS_15_7As.py
    Untracked:  code/._filterMPPAS_50.py
    Untracked:  code/._filterSAFforMP.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._finalPASbed2SAF.py
    Untracked:  code/._fix4su304corr.py
    Untracked:  code/._fix4su604corr.py
    Untracked:  code/._fix4sukalisto.py
    Untracked:  code/._fixExandUnexeQTL
    Untracked:  code/._fixExandUnexeQTL.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._fixFChead_bothfrac.py
    Untracked:  code/._fixFChead_short.py
    Untracked:  code/._fixGWAS4Munge.py
    Untracked:  code/._fixH3k12ac.py
    Untracked:  code/._fixPASregionSNPs.py
    Untracked:  code/._fixRNAhead4corr.py
    Untracked:  code/._fixRNAkalisto.py
    Untracked:  code/._fix_randomIntron.py
    Untracked:  code/._fixgroupedtranscript.py
    Untracked:  code/._fixhead_netseqfc.py
    Untracked:  code/._getAPAfromanyeQTL.py
    Untracked:  code/._getApapval4eqtl.py
    Untracked:  code/._getApapval4eqtl_unexp.py
    Untracked:  code/._getApapval4eqtl_version67.py
    Untracked:  code/._getDownstreamIntronNuclear.py
    Untracked:  code/._getIntronDownstreamPAS.py
    Untracked:  code/._getIntronUpstreamPAS.py
    Untracked:  code/._getQTLalleles.py
    Untracked:  code/._getQTLfastq.sh
    Untracked:  code/._getUpstreamIntronNuclear.py
    Untracked:  code/._grouptranscripts.py
    Untracked:  code/._intersectVCFandupPAS.sh
    Untracked:  code/._keep5perMAF.py
    Untracked:  code/._keepSNP_vcf.sh
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._makeSAFbothfrac5perc.py
    Untracked:  code/._makeSNP2rsidfile.py
    Untracked:  code/._makeeQTLempirical_unexp.py
    Untracked:  code/._makeeQTLempiricaldist.py
    Untracked:  code/._makegencondeTSSfile.py
    Untracked:  code/._mapSSsnps2PAS.sh
    Untracked:  code/._mergRNABam.sh
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeAnnotations.sh
    Untracked:  code/._mergeBW_norm.sh
    Untracked:  code/._mergeBamNascent.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._miRNAdisrupt.sh
    Untracked:  code/._mnase1stintron.sh
    Untracked:  code/._mnaseDT_fourthintron.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._netseqDTplot1stIntron.sh
    Untracked:  code/._netseqFC.sh
    Untracked:  code/._nucQTLGWAS.py
    Untracked:  code/._nucSpecQTLineData.py
    Untracked:  code/._nucSpeceffectsize.py
    Untracked:  code/._nucspecnucPASine.py
    Untracked:  code/._pQTLsotherdata.py
    Untracked:  code/._pacbioDT.sh
    Untracked:  code/._pacbioIntronicDT.sh
    Untracked:  code/._parseBestbamid.py
    Untracked:  code/._parseLDRes.py
    Untracked:  code/._parseLDresBothPAS.sh
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._phenoQTLfromlist.py
    Untracked:  code/._processYRIgen.py
    Untracked:  code/._pttQTLsinapaQTL.py
    Untracked:  code/._qtlRegionseq.sh
    Untracked:  code/._qtlsPvalOppFrac.py
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._removeXfromHmm.py
    Untracked:  code/._removeloc_pheno.py
    Untracked:  code/._riboQTL.sh
    Untracked:  code/._runCorrectNomEqtl.sh
    Untracked:  code/._runFixGWAS4Munge.sh
    Untracked:  code/._runHMMpermuteAPAqtls.sh
    Untracked:  code/._runHMMpermuteeQTLS.sh
    Untracked:  code/._runMakeEmpiricaleQTL_unexp.sh
    Untracked:  code/._runMakeeQTLempirical.sh
    Untracked:  code/._run_bam2bw_all3prime.sh
    Untracked:  code/._run_bam2bw_extra3.sh
    Untracked:  code/._run_bestbamid.sj
    Untracked:  code/._run_dist2sig_randomintron.sh
    Untracked:  code/._run_filtersnpLD.sh
    Untracked:  code/._run_getAPAfromeQTL_version6.7.sh
    Untracked:  code/._run_getApaPval4eqtl.sh
    Untracked:  code/._run_getapafromeQTL.py
    Untracked:  code/._run_getapafromeQTL.sh
    Untracked:  code/._run_getapapval4eqtl_unexp.sh
    Untracked:  code/._run_leafcutterDiffIso.sh
    Untracked:  code/._run_prxySNP.sh
    Untracked:  code/._run_pttfacetboxplot.sh
    Untracked:  code/._run_sepUsagephen.sh
    Untracked:  code/._run_sepgenobychrom.sh
    Untracked:  code/._run_verifybam.sh
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._sepUsagePhen.py
    Untracked:  code/._sepgenobychrom.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._sortindexRNAbam.sh
    Untracked:  code/._specAPAinE.py
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/._subsetAPAnotEorPgene.py
    Untracked:  code/._subsetAPAnotEorPgene_2versions.py
    Untracked:  code/._subsetApanoteGene.py
    Untracked:  code/._subsetApanoteGene_2versions.py
    Untracked:  code/._subsetUnexplainedeQTLs.py
    Untracked:  code/._subsetVCF_SS.sh
    Untracked:  code/._subsetVCF_noSSregions.sh
    Untracked:  code/._subsetVCF_upstreamPAS.sh
    Untracked:  code/._subset_diffisopheno.py
    Untracked:  code/._subsetpermAPAwithGenelist.py
    Untracked:  code/._subsetpermAPAwithGenelist_2versions.py
    Untracked:  code/._subsetvcf_otherreg.sh
    Untracked:  code/._subsetvcf_permSS.sh
    Untracked:  code/._subtrachfiveprimeUTR.sh
    Untracked:  code/._subtractExons.sh
    Untracked:  code/._subtractfiveprimeUTR.sh
    Untracked:  code/._tabixSNPS.sh
    Untracked:  code/._tenBPupstreamPAS.py
    Untracked:  code/._test.pdf
    Untracked:  code/._testVerifyBam.sh
    Untracked:  code/._totSeceffectsize.py
    Untracked:  code/._twentyBPupstreamPAS.py
    Untracked:  code/._utrdms2saf.py
    Untracked:  code/._vcf2bed.py
    Untracked:  code/._verifyBam18517N.sh
    Untracked:  code/._verifyBam18517T.sh
    Untracked:  code/._verifyBam19128N.sh
    Untracked:  code/._verifyBam19128T.sh
    Untracked:  code/._wrap_verifybam.sh
    Untracked:  code/._writePTTexamplecode.py
    Untracked:  code/._writePTTexamplecode.sh
    Untracked:  code/.pversion
    Untracked:  code/.snakemake/
    Untracked:  code/1
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_nominal_inclusive.err
    Untracked:  code/APAqtl_nominal_inclusive.out
    Untracked:  code/APAqtl_nominal_nonNorm.err
    Untracked:  code/APAqtl_nominal_nonNorm.out
    Untracked:  code/APAqtl_nominal_versions67.err
    Untracked:  code/APAqtl_nominal_versions67.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/APAqtl_permuted_versions67.err
    Untracked:  code/APAqtl_permuted_versions67.out
    Untracked:  code/BothFracDTPlot1stintron.err
    Untracked:  code/BothFracDTPlot1stintron.out
    Untracked:  code/BothFracDTPlot4stintron.err
    Untracked:  code/BothFracDTPlot4stintron.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/BothFracDTPlotGeneRegions_norm.err
    Untracked:  code/BothFracDTPlotGeneRegions_norm.out
    Untracked:  code/DistPAS2Sig_RandomIntron.py
    Untracked:  code/EandPqtl.err
    Untracked:  code/EandPqtl.out
    Untracked:  code/EncodeRNADTPlotGeneRegions.err
    Untracked:  code/EncodeRNADTPlotGeneRegions.out
    Untracked:  code/FC_NucintronPASupandDown.err
    Untracked:  code/FC_NucintronPASupandDown.out
    Untracked:  code/FC_UTR.err
    Untracked:  code/FC_UTR.out
    Untracked:  code/FC_intronPASupandDown.err
    Untracked:  code/FC_intronPASupandDown.out
    Untracked:  code/FC_nascent.err
    Untracked:  code/FC_nascentout
    Untracked:  code/FC_newPAS_olddata.err
    Untracked:  code/FC_newPAS_olddata.out
    Untracked:  code/HmmPermute.p
    Untracked:  code/IntronicPASDT.err
    Untracked:  code/IntronicPASDT.out
    Untracked:  code/LD_vcftools.hap.out
    Untracked:  code/MapAllRBP.sh
    Untracked:  code/MapRBP.err
    Untracked:  code/MapRBP.out
    Untracked:  code/NascentDTPlotGeneRegions.err
    Untracked:  code/NascentDTPlotGeneRegions.out
    Untracked:  code/NascentDTPlotPAS.err
    Untracked:  code/NascentDTPlotPAS.out
    Untracked:  code/NascentDTPlotPAS_3utr.err
    Untracked:  code/NascentDTPlotPAS_3utr.out
    Untracked:  code/NascentDTPlotPAS_firstintron.err
    Untracked:  code/NascentDTPlotPAS_firstintron.out
    Untracked:  code/NascentDTPlotPAS_intron.err
    Untracked:  code/NascentDTPlotPAS_intron.out
    Untracked:  code/NascentDTPlotPAS_nuc.err
    Untracked:  code/NascentDTPlotPAS_nuc.out
    Untracked:  code/NascentDTPlotPAS_tot.err
    Untracked:  code/NascentDTPlotPAS_tot.out
    Untracked:  code/Nuclear_example.err
    Untracked:  code/Nuclear_example.out
    Untracked:  code/NuclearandRNA5samp_dtplots.sh
    Untracked:  code/NuclearandRNAFracDTPlotGeneRegions.err
    Untracked:  code/NuclearandRNAFracDTPlotGeneRegions.out
    Untracked:  code/PACbioDT.err
    Untracked:  code/PACbioDT.out
    Untracked:  code/PACbioDTitronic.err
    Untracked:  code/PACbioDTitronic.out
    Untracked:  code/Prematureqtl_nominal.err
    Untracked:  code/Prematureqtl_nominal.out
    Untracked:  code/Prematureqtl_permuted.err
    Untracked:  code/Prematureqtl_permuted.out
    Untracked:  code/RBPdisrupt.err
    Untracked:  code/RBPdisrupt.out
    Untracked:  code/RBPdisrupt.sh
    Untracked:  code/README.md
    Untracked:  code/RNABam2BW.err
    Untracked:  code/RNABam2BW.out
    Untracked:  code/RNAseqDTPlotGeneRegions.err
    Untracked:  code/RNAseqDTPlotGeneRegions.out
    Untracked:  code/Rplots.pdf
    Untracked:  code/TESplots100bp.err
    Untracked:  code/TESplots100bp.out
    Untracked:  code/TESplots150bp.err
    Untracked:  code/TESplots150bp.out
    Untracked:  code/TESplots200bp.err
    Untracked:  code/TESplots200bp.out
    Untracked:  code/Total_example.err
    Untracked:  code/Total_example.out
    Untracked:  code/Untitled
    Untracked:  code/YRI_LCL.vcf.gz
    Untracked:  code/YRI_LCL_chr1.vcf.gz.log
    Untracked:  code/YRI_LCL_chr1.vcf.gz.recode.vcf
    Untracked:  code/annotatedPASregion.err
    Untracked:  code/annotatedPASregion.out
    Untracked:  code/apaQTL_nominalInclusive.sh
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assigntotPeak2Intronicregion.err
    Untracked:  code/assigntotPeak2Intronicregion.out
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bam2bw_5primemost.err
    Untracked:  code/bam2bw_5primemost.out
    Untracked:  code/binary_fileset.log
    Untracked:  code/bothFrac_FC.err
    Untracked:  code/bothFrac_FC.out
    Untracked:  code/callSHscripts.txt
    Untracked:  code/closestannotated.err
    Untracked:  code/closestannotated.out
    Untracked:  code/closestannotatedbyfrac.err
    Untracked:  code/closestannotatedbyfrac.out
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/extactPAS100meanphyloP.py
    Untracked:  code/extractPACmeanPhyloP.py
    Untracked:  code/extractPhylop50up.py
    Untracked:  code/extractPhylopextra50.py
    Untracked:  code/fixExandUnexeQTL
    Untracked:  code/fixGWAS4Munge.py
    Untracked:  code/fix_randomIntron.py
    Untracked:  code/fixmunge
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.log
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.recode.vcf
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/grouptranscripts.err
    Untracked:  code/grouptranscripts.out
    Untracked:  code/intersectPAS_ssSNPS.err
    Untracked:  code/intersectPAS_ssSNPS.out
    Untracked:  code/intersectVCFPAS.err
    Untracked:  code/intersectVCFPAS.out
    Untracked:  code/log/
    Untracked:  code/logs/
    Untracked:  code/merge53PRIMEbam.err
    Untracked:  code/merge53PRIMEbam.out
    Untracked:  code/merge53RNAbam.err
    Untracked:  code/merge53prime.sh
    Untracked:  code/merge5RNABam.err
    Untracked:  code/merge5RNABam.out
    Untracked:  code/merge5RNAbam.out
    Untracked:  code/merge5RNAbam.sh
    Untracked:  code/mergeAnno.err
    Untracked:  code/mergeAnno.out
    Untracked:  code/mergeBWnorm.err
    Untracked:  code/mergeBWnorm.out
    Untracked:  code/mergeBamNacent.err
    Untracked:  code/mergeBamNacent.out
    Untracked:  code/mergeRNAbam.err
    Untracked:  code/mergeRNAbam.out
    Untracked:  code/miRNAdisrupt.err
    Untracked:  code/miRNAdisrupt.out
    Untracked:  code/miRNAdisrupt.sh
    Untracked:  code/mnaseDTPlot1stintron.err
    Untracked:  code/mnaseDTPlot1stintron.out
    Untracked:  code/mnaseDTPlot4thintron.err
    Untracked:  code/mnaseDTPlot4thintron.out
    Untracked:  code/netDTPlot4thintron.out
    Untracked:  code/netseqFC.err
    Untracked:  code/netseqFC.out
    Untracked:  code/neyDTPlot4thintron.err
    Untracked:  code/nucspecinE.py
    Untracked:  code/parseLDRes.py
    Untracked:  code/parseLDres.err
    Untracked:  code/parseLDres.out
    Untracked:  code/parseLDresBothPAS.sh
    Untracked:  code/plink.log
    Untracked:  code/prxySNP.err
    Untracked:  code/prxySNP.out
    Untracked:  code/pttFacetBoxplots.err
    Untracked:  code/pttFacetBoxplots.out
    Untracked:  code/qtlFacetBoxplots.err
    Untracked:  code/qtlFacetBoxplots.out
    Untracked:  code/rLD_vcftools.hap.err
    Untracked:  code/riboqtl.err
    Untracked:  code/riboqtl.out
    Untracked:  code/runBestBamID.err
    Untracked:  code/runCorrectNomeqtl.err
    Untracked:  code/runCorrectNomeqtl.out
    Untracked:  code/runFilterLD.err
    Untracked:  code/runFilterLD.out
    Untracked:  code/runFixGWAS4Munge.sh
    Untracked:  code/runHMMpermute.err
    Untracked:  code/runHMMpermute.out
    Untracked:  code/runHMMpermuteeQTLs.err
    Untracked:  code/runHMMpermuteeQTLs.out
    Untracked:  code/runMakeEmpiricaleQTLs.err
    Untracked:  code/runMakeEmpiricaleQTLs.out
    Untracked:  code/runMakeEmpiricaleQTLsunex.err
    Untracked:  code/runMakeEmpiricaleQTLsunex.out
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_DistPAS2Sig_intron.err
    Untracked:  code/run_DistPAS2Sig_intron.out
    Untracked:  code/run_bam2bw.err
    Untracked:  code/run_bam2bw.out
    Untracked:  code/run_bam2bwexta.err
    Untracked:  code/run_bam2bwexta.out
    Untracked:  code/run_dist2sig_randomintron.sh
    Untracked:  code/run_getAPAfromanyeQTL.err
    Untracked:  code/run_getAPAfromanyeQTL.out
    Untracked:  code/run_getApaPval4eQTLs.err
    Untracked:  code/run_getApaPval4eQTLs.out
    Untracked:  code/run_getApaPval4eQTLsunexplained.err
    Untracked:  code/run_getApaPval4eQTLsunexplained.out
    Untracked:  code/run_leafcutter_ds.err
    Untracked:  code/run_leafcutter_ds.out
    Untracked:  code/run_sepgenobychrom.err
    Untracked:  code/run_sepgenobychrom.out
    Untracked:  code/run_sepusage.err
    Untracked:  code/run_sepusage.out
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/run_verifybam128N.err
    Untracked:  code/run_verifybam128N.out
    Untracked:  code/run_verifybam128T.err
    Untracked:  code/run_verifybam128T.out
    Untracked:  code/run_verifybam517N.err
    Untracked:  code/run_verifybam517N.out
    Untracked:  code/run_verifybam517T.err
    Untracked:  code/run_verifybam517T.out
    Untracked:  code/runprxySNP.err
    Untracked:  code/runprxySNP.out
    Untracked:  code/runres2pas.err
    Untracked:  code/runres2pas.out
    Untracked:  code/scripts/
    Untracked:  code/scripts_PAS_500_Lymph/
    Untracked:  code/seqQTLfastq.err
    Untracked:  code/seqQTLfastq.out
    Untracked:  code/seqQTLregion.err
    Untracked:  code/seqQTLregion.out
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  code/sortindexRNABam.err
    Untracked:  code/sortindexRNABam.out
    Untracked:  code/specAPAinE.py
    Untracked:  code/subsetvcf_SS.err
    Untracked:  code/subsetvcf_SS.out
    Untracked:  code/subsetvcf_noSS.err
    Untracked:  code/subsetvcf_noSS.out
    Untracked:  code/subsetvcf_pas.err
    Untracked:  code/subsetvcf_pas.out
    Untracked:  code/subsetvcf_perm.err
    Untracked:  code/subsetvcf_perm.out
    Untracked:  code/subsetvcf_rand.err
    Untracked:  code/subsetvcf_rand.out
    Untracked:  code/subtract5UTR.err
    Untracked:  code/subtract5UTR.out
    Untracked:  code/subtractExons.err
    Untracked:  code/subtractExons.out
    Untracked:  code/tabixSNPs.err
    Untracked:  code/tabixSNPs.out
    Untracked:  code/test.pdf
    Untracked:  code/testFix.txt
    Untracked:  code/test_verifybam.err
    Untracked:  code/test_verifybam.out
    Untracked:  code/vcf_keepsnps.err
    Untracked:  code/vcf_keepsnps.out
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/zipandtabPhen.err
    Untracked:  code/zipandtabPhen.out
    Untracked:  data/._.DS_Store
    Untracked:  data/._MetaDataSequencing.txt
    Untracked:  data/AnnotatedPAS/
    Untracked:  data/ApaByEgene/
    Untracked:  data/ApaByPgene/
    Untracked:  data/BadLines/
    Untracked:  data/BaseComp/
    Untracked:  data/Battle_pQTL/
    Untracked:  data/CheckSums/
    Untracked:  data/CompareOldandNew/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso/
    Untracked:  data/EncodeRNA/
    Untracked:  data/ExampleQTLPlots/
    Untracked:  data/ExampleQTLPlots_update/
    Untracked:  data/ExpressionIndependentapaQTLs.txt
    Untracked:  data/FiveMergedBW/
    Untracked:  data/FiveMergedBam/
    Untracked:  data/FlaggedPAS/
    Untracked:  data/GWAS_overlap/
    Untracked:  data/GeuvadisRNA/
    Untracked:  data/HMMqtls/
    Untracked:  data/LDSR_annotations/
    Untracked:  data/Li_eQTLs/
    Untracked:  data/NMD/
    Untracked:  data/NascentRNA/
    Untracked:  data/NucSpeceQTLeffect/
    Untracked:  data/PAS/
    Untracked:  data/PAS_postFlag/
    Untracked:  data/PolyA_DB/
    Untracked:  data/PreTerm_pheno/
    Untracked:  data/PrematureQTLNominal/
    Untracked:  data/PrematureQTLPermuted/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/QTLoverlap/
    Untracked:  data/QTLoverlap_inclusive/
    Untracked:  data/QTLoverlap_nonNorm/
    Untracked:  data/README.md
    Untracked:  data/RNAseq/
    Untracked:  data/Reads2UTR/
    Untracked:  data/SNPinSS/
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/TF_motifdisruption/
    Untracked:  data/TSS/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/Version15bp6As/
    Untracked:  data/Version15bp7As/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLNominal_4pc/
    Untracked:  data/apaQTLNominal_inclusive/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLPermuted_4pc/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/assignedPeaks_15Up/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/bothFrac_FC/
    Untracked:  data/bw/
    Untracked:  data/bw_norm/
    Untracked:  data/eCLip/
    Untracked:  data/eQTLs/
    Untracked:  data/exampleQTLs/
    Untracked:  data/exosome/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/fourSU/
    Untracked:  data/h3k27ac/
    Untracked:  data/highdiffsiggenes.txt
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/intronRNAratio/
    Untracked:  data/intron_analysis/
    Untracked:  data/locusZoom/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBW_norm/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/miRNAbinding/
    Untracked:  data/molPhenos/
    Untracked:  data/molQTLs/
    Untracked:  data/motifdistrupt/
    Untracked:  data/nPAS/
    Untracked:  data/netseq/
    Untracked:  data/nonNorm_pheno/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/oldPASfiles/
    Untracked:  data/overlapeQTL_try2/
    Untracked:  data/overlapeQTLs/
    Untracked:  data/pQTLoverlap/
    Untracked:  data/pacbio/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/phenotype_inclusivePAS/
    Untracked:  data/phylop/
    Untracked:  data/pttQTL/
    Untracked:  data/pttQTLplots/
    Untracked:  data/sigDiffGenes.txt
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  data/twoMech/
    Untracked:  data/vareQTLvarAPAqtl/
    Untracked:  data/verifyBAM/
    Untracked:  data/verifyBAM_full/
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/._AverageDiffHeatmap.Nuclear.png
    Untracked:  output/._AverageDiffHeatmap.Total.png
    Untracked:  output/._GeneswithAPApotential.png
    Untracked:  output/._GeneswithAPApotentialAllPAS.png
    Untracked:  output/._PASlocation.png
    Untracked:  output/._SignalSitePlot.png
    Untracked:  output/._meanCorrelationPhenotypes.svg
    Untracked:  output/._qqplot_Nuclear_APAperm.png
    Untracked:  output/._qqplot_Nuclear_APAperm_4pc.png
    Untracked:  output/._qqplot_Total_APAperm.png
    Untracked:  output/._qqplot_Total_APAperm_4pc.png
    Untracked:  output/AverageDiffHeatmap.Nuclear.png
    Untracked:  output/AverageDiffHeatmap.Total.png
    Untracked:  output/GeneswithAPApotential.png
    Untracked:  output/GeneswithAPApotentialAllPAS.png
    Untracked:  output/PASlocation.png
    Untracked:  output/SignalSitePlot.png
    Untracked:  output/SignalSitePlotbyLoc.png
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/
    Untracked:  output/meanCorrelationPhenotypes.svg
    Untracked:  output/newnuc.png
    Untracked:  output/newtot.png
    Untracked:  output/oldnuc.png
    Untracked:  output/oldtot.png
    Untracked:  output/qqplot_Nuclear_APAperm.png
    Untracked:  output/qqplot_Nuclear_APAperm_4pc.png
    Untracked:  output/qqplot_Total_APAperm.png
    Untracked:  output/qqplot_Total_APAperm_4pc.png
    Untracked:  run_verifybam517N.err
    Untracked:  run_verifybam517N.out
Unstaged changes:
    Modified:   analysis/ExploreNpas.Rmd
    Modified:   analysis/NuclearSpecIncludeNotTested.Rmd
    Modified:   analysis/PASdescriptiveplots.Rmd
    Modified:   analysis/Readdistagainstfeatures.Rmd
    Modified:   analysis/TSS.Rmd
    Modified:   analysis/decayAndStability.Rmd
    Modified:   analysis/miRNAdisrupt.Rmd
    Modified:   analysis/nascenttranscription.Rmd
    Modified:   analysis/nucSpecinEQTLs.Rmd
    Modified:   analysis/overlapapaqtlsandeqtls.Rmd
    Modified:   analysis/pQTLexampleplot.Rmd
    Modified:   analysis/propeQTLs_explained.Rmd
    Modified:   analysis/version15bpfilter.Rmd
    Modified:   code/DistPAS2Sig.py
    Modified:   code/Script4NuclearQTLexamples.sh
    Modified:   code/Script4TotalQTLexamples.sh
    Modified:   code/apaQTLsnake.err
    Modified:   code/environment.yaml
    Modified:   code/run_qtlFacetBoxplots.sh
    Deleted:    code/test.txt
    Deleted:    reads_graphs.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | 295b72e | brimittleman | 2020-02-13 | add error bars | 
| html | 3455a9e | brimittleman | 2020-02-07 | Build site. | 
| Rmd | f3da578 | brimittleman | 2020-02-07 | add LD res | 
| html | 7477dd7 | brimittleman | 2020-02-06 | Build site. | 
| Rmd | 8c10277 | brimittleman | 2020-02-06 | add code for LD and fix double y axis | 
| html | 6c6a1d2 | brimittleman | 2020-02-05 | Build site. | 
| Rmd | a1f5355 | brimittleman | 2020-02-05 | add potential mechanisms and ld scripts | 
| html | 3d9f5c7 | brimittleman | 2020-01-30 | Build site. | 
| Rmd | fd5ccd7 | brimittleman | 2020-01-30 | add LD regress notes and first var in apa | 
library(data.table)
library(workflowr)
This is workflowr version 1.6.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.1       ✔ purrr   0.3.2  
✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.3.1  
✔ readr   1.3.1       ✔ forcats 0.3.0  
── Conflicts ──────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::between()   masks data.table::between()
✖ dplyr::filter()    masks stats::filter()
✖ dplyr::first()     masks data.table::first()
✖ dplyr::lag()       masks stats::lag()
✖ dplyr::last()      masks data.table::last()
✖ purrr::transpose() masks data.table::transpose()
LD score regression with apaQTLs and multiple myeloma?
https://www.nature.com/articles/s41467-018-04989-w
QTLs:
Region around permuted snps. 500bp
try a few different
PAS:
maybe 1000 base pairs around each PAS.
bed file chrom start and end. - use CHR
-b cells: lymphocite
GWAS atlas
http://www.computationalmedicine.fi/data#Cytokine_GWAS
GWAS from Phenix= /project2/yangili1/zpmu/GWAS_loci/27863252
sle_Vyse_chr1-22.txt.gz
RA_GWASmeta_TransEthnic_v2.txt.gz
http://www.nealelab.is/uk-biobank - myeloma and luekemias
HG 19 LD scores
03,05,06,07
/project2/yangili1/zpmu/ldsc/scripts
First I will prepare the PAS and apaQTL filese:
mkdir ../data/LDSR_annotations
Nuclear 5% PAS
PAS=read.table("../data/PAS/APApeak_Peaks_GeneLocAnno.Nuclear.5perc.sort.bed",col.names = c("Chr","start","end","name","score","stand"),stringsAsFactors = F)
PAS_500=PAS%>% mutate(chrom=paste("chr", Chr, sep=""),newStart=end-250, newEnd=end+250 ) %>% select(chrom,newStart,newEnd)
PAS_1000=PAS%>% mutate(chrom=paste("chr", Chr, sep=""),newStart=end-1000, newEnd=end+1000 ) %>% select(chrom, newStart,newEnd)
write.table(PAS_500,"../data/LDSR_annotations/PAS_Nuclear500.bed", col.names = F, row.names = F, quote = F, sep="\t")
write.table(PAS_1000,"../data/LDSR_annotations/PAS_Nuclear1000.bed", col.names = F, row.names = F, quote = F, sep="\t")
Sort:
sort -k1,1 -k2,2n ../data/LDSR_annotations/PAS_Nuclear500.bed > ../data/LDSR_annotations/PAS_Nuclear500.sort.bed
sort -k1,1 -k2,2n ../data/LDSR_annotations/PAS_Nuclear1000.bed > ../data/LDSR_annotations/PAS_Nuclear1000.sort.bed
QTLS:
RSID=read.table("../../../briana/li_genotypes/RSID2snploc.txt", header = T, stringsAsFactors = F, col.names = c("snp","sid", "ref","alt"))
NucQTL=read.table("../data/apaQTLPermuted_4pc/APApeak_Phenotype_GeneLocAnno.Nuclear_permResBH.txt", header = T ,stringsAsFactors = F) %>% inner_join(RSID, by="sid") %>% separate(snp, into=c("chr","loc"),sep=":")
NucQTL500=NucQTL%>% mutate(start=as.integer(loc)-250,end=as.integer(loc)+250, chrom=paste("chr",chr,by="")) %>% select(chrom,start,end)
NucQTL1000=NucQTL%>% mutate(start=as.integer(loc)-500,end=as.integer(loc)+500, chrom=paste("chr",chr,by="")) %>% select(chrom,start,end)
write.table(NucQTL500,"../data/LDSR_annotations/QTL_Nuclear500.bed", col.names = F, row.names = F, quote = F, sep="\t")
write.table(NucQTL1000,"../data/LDSR_annotations/QTL_Nuclear1000.bed", col.names = F, row.names = F, quote = F, sep="\t")
Sort:
sort -k1,1 -k2,2n ../data/LDSR_annotations/QTL_Nuclear500.bed > ../data/LDSR_annotations/QTL_Nuclear500.sort.bed
sort -k1,1 -k2,2n ../data/LDSR_annotations/QTL_Nuclear1000.bed > ../data/LDSR_annotations/QTL_Nuclear1000.sort.bed
Choose test gwas:
Start with RA because it works with Phenoix’s code.
I moved the scripts to my code directory. I will make a copy of it for PAS_500_Lymph
cp -R scripts scripts_PAS_500_Lymph
../data/LDSR_annotations/
Change the places in 03,05,06,07
#03 will annotate all 4 of these  
sbatch scripts_PAS_500_Lymph/03_immuneAtlas_annot.sh 
sbatch scripts_PAS_500_Lymph/05_immuneAtlas_ldscore.sh
sbatch scripts_PAS_500_Lymph/06_munge_gwas_lymphPAS500.sh
mkdir /project2/gilad/briana/apaQTL/data/LDSR_annotations/results/
sbatch scripts_PAS_500_Lymph/07_partition_h2g.sh 
stuck on 7. need baseline LD files
Try to munge another GWAS :
I need to understand the column names for the GWAS to put in the script.
VARIANT ID_dbSNP49 CHR BP REF ALT ALT_MINOR DIRECTION EFFECT SE P MLOG10P ALT_FREQ MA_FREQ 1:10177_A_AC rs367896724 1 10177 A AC TRUE + 5.330523e-03 4.971989e-03 0.2837 5.471861e-01 3.926e-01 3.926e-01
SNP: ID_dbSNP49 P: P A1: REF A2: ALT MAF: MA_FREQ EFFECT SE
Missing N baso_neut_sum, eo_baso_sum, and neut_eo_sum
metaDt <- fread("/project2/yangili1/zpmu/GWAS_loci/gwasATLAS_threePMID.txt") %>% 
  filter(PMID == 27863252) %>% select(N, uniqTrait)
traits=fread("/project2/yangili1/zpmu/GWAS_loci/27863252/TRAIT_MAP.tsv")
metandTrait=traits %>% dplyr::rename("uniqTrait"= long_name) %>% full_join(metaDt,by="uniqTrait")
write.table(metandTrait, "/project2/yangili1/zpmu/GWAS_loci/MetawTrait.txt", col.names = F,row.names = F,quote = F,sep="\t")
I need
SNP – SNP identifier (e.g., rs number) N – sample size (which may vary from SNP to SNP). Z – z-score. Sign with respect to A1 (warning, possible gotcha) A1 – first allele (effect allele) A2– second allele (other allele)
SNP is EFFECT/SE
split up to _N for the name of the file.
sbatch runFixGWAS4Munge.sh 
mkdir ../data/LDSR_annotations/Munge/
sbatch scripts_PAS_500_Lymph/mungeGWAS.sh
sbatch scripts_PAS_500_Lymph/par_h2g_allGWAS_PAS1000.sh
sbatch scripts_PAS_500_Lymph/par_h2g_allGWAS_PAS500.sh
sbatch scripts_PAS_500_Lymph/par_h2g_allGWAS_qtl1000.sh
sbatch scripts_PAS_500_Lymph/par_h2g_allGWAS_qtl500.sh
Process the results:
Create a python script that prints out the names of the gwas, the region, and the results.
sbatch parseLDresBothPAS.sh
Results:
reshead=c("GWAS",colnames(read.table("../data/LDSR_annotations/results/PAS_Nuclear1000_baso_N171846_narrow_form.baseline.results",header=T)))
PAS500res=read.table("../data/LDSR_annotations/results/allPAS_Nuclear500.txt", col.names = reshead) %>% separate(GWAS, into=c("PAS", "Type", "extra"),sep="_N") %>%separate(Type, into=c("nuc", "pheno"),sep="0_")
Warning: Expected 3 pieces. Missing pieces filled with `NA` in 1 rows [30].
PAS500_snpsincluded=round(PAS500res$Prop._SNPs[1],3) * 100
PAS1000res=read.table("../data/LDSR_annotations/results/allPAS_Nuclear1000.txt", col.names = reshead) %>% separate(GWAS, into=c("PAS", "Type", "extra"),sep="_N") %>%separate(Type, into=c("nuc", "pheno"),sep="0_") 
Warning: Expected 3 pieces. Missing pieces filled with `NA` in 1 rows [30].
PAS1000_snpsincluded=round(PAS1000res$Prop._SNPs[1],3) *100
Plot the H2 explained:
ggplot(PAS500res,aes(x=pheno, y=Prop._h2,fill=pheno)) + geom_bar(stat="identity") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(legend.position = "none") + annotate("text", label=paste("% of SNPs included", PAS500_snpsincluded), x=10, y=.08) + geom_errorbar(aes(ymin=Prop._h2-Prop._h2_std_error, ymax=Prop._h2+Prop._h2_std_error), width=.2,position=position_dodge(.9))

| Version | Author | Date | 
|---|---|---|
| 3455a9e | brimittleman | 2020-02-07 | 
ggplot(PAS500res,aes(x=pheno, y=Enrichment, fill=pheno)) + geom_bar(stat="identity") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(legend.position = "none") + annotate("text", label=paste("% of SNPs included", PAS500_snpsincluded), x=10, y=15) + geom_errorbar(aes(ymin=Enrichment-Enrichment_std_error, ymax=Enrichment+Enrichment_std_error), width=.2,position=position_dodge(.9)) + geom_hline(yintercept = 1, linetype="dotted")

| Version | Author | Date | 
|---|---|---|
| 3455a9e | brimittleman | 2020-02-07 | 
Plot the H2 explained:
ggplot(PAS1000res,aes(x=pheno, y=Prop._h2,fill=pheno)) + geom_bar(stat="identity") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(legend.position = "none") + annotate("text", label=paste("% of SNPs included", PAS1000_snpsincluded), x=10, y=.15)+labs(x="", title="LD score regression results for 1000 BP around each PAS", y="% of heritability explained")+ geom_errorbar(aes(ymin=Prop._h2-Prop._h2_std_error, ymax=Prop._h2+Prop._h2_std_error), width=.2,position=position_dodge(.9))

| Version | Author | Date | 
|---|---|---|
| 3455a9e | brimittleman | 2020-02-07 | 
ggplot(PAS1000res,aes(x=pheno, y=Enrichment, fill=pheno)) + geom_bar(stat="identity") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(legend.position = "none") + annotate("text", label=paste("% of SNPs included", PAS1000_snpsincluded), x=10, y=12) +labs(x="", title="LD score regression results for 1000 BP around each PAS") + geom_errorbar(aes(ymin=Enrichment-Enrichment_std_error, ymax=Enrichment+Enrichment_std_error), width=.2,position=position_dodge(.9)) + geom_hline(yintercept = 1, linetype="dotted")

| Version | Author | Date | 
|---|---|---|
| 3455a9e | brimittleman | 2020-02-07 | 
gunzip /project2/yangili1/zpmu/GWAS_loci/27863252/baso_neut_sum_N170143_narrow_form.tsv.gz
python fixGWAS4Munge.py /project2/yangili1/zpmu/GWAS_loci/27863252/baso_neut_sum_N170143_narrow_form.tsv /project2/yangili1/zpmu/GWAS_loci/27863252/baso_neut_sum_N170143_narrow_form.fixed4Munge.tsv
gzip /project2/yangili1/zpmu/GWAS_loci/27863252/baso_neut_sum_N170143_narrow_form.tsv
gzip /project2/yangili1/zpmu/GWAS_loci/27863252/baso_neut_sum_N170143_narrow_form.fixed4Munge.tsv
 
/project2/gilad/briana/ldsc/munge_sumstats.py --sumstats /project2/yangili1/zpmu/GWAS_loci/27863252/baso_neut_sum_N170143_narrow_form.fixed4Munge.tsv.gz --out /project2/gilad/briana/apaQTL/data/LDSR_annotations/Munge/baso_neut_sum_N170143_narrow_form.munge --merge-alleles /project2/yangili1/zpmu/ldsc/data/w_hm3.snplist --chunksize 500000
    
#2  
gunzip /project2/yangili1/zpmu/GWAS_loci/27863252/eo_baso_sum_N171771_narrow_form.tsv.gz
python fixGWAS4Munge.py /project2/yangili1/zpmu/GWAS_loci/27863252/eo_baso_sum_N171771_narrow_form.tsv /project2/yangili1/zpmu/GWAS_loci/27863252/eo_baso_sum_N171771_narrow_form.fixed4Munge.tsv   
gzip /project2/yangili1/zpmu/GWAS_loci/27863252/eo_baso_sum_N171771_narrow_form.fixed4Munge.tsv   
gzip /project2/yangili1/zpmu/GWAS_loci/27863252/eo_baso_sum_N171771_narrow_form.tsv
 /project2/gilad/briana/ldsc/munge_sumstats.py \
    --sumstats /project2/yangili1/zpmu/GWAS_loci/27863252/eo_baso_sum_N171771_narrow_form.fixed4Munge.tsv.gz \
    --out /project2/gilad/briana/apaQTL/data/LDSR_annotations/Munge/eo_baso_sum_N171771_narrow_form.munge \
    --merge-alleles /project2/yangili1/zpmu/ldsc/data/w_hm3.snplist \
    --chunksize 500000
#3  
gunzip /project2/yangili1/zpmu/GWAS_loci/27863252/neut_eo_sum_N170384_narrow_form.tsv.gz
python fixGWAS4Munge.py /project2/yangili1/zpmu/GWAS_loci/27863252/neut_eo_sum_N170384_narrow_form.tsv /project2/yangili1/zpmu/GWAS_loci/27863252/neut_eo_sum_N170384_narrow_form.fixed4Munge.tsv 
gzip /project2/yangili1/zpmu/GWAS_loci/27863252/neut_eo_sum_N170384_narrow_form.fixed4Munge.tsv 
gzip /project2/yangili1/zpmu/GWAS_loci/27863252/neut_eo_sum_N170384_narrow_form.tsv
 /project2/gilad/briana/ldsc/munge_sumstats.py \
    --sumstats /project2/yangili1/zpmu/GWAS_loci/27863252/neut_eo_sum_N170384_narrow_form.fixed4Munge.tsv.gz \
    --out /project2/gilad/briana/apaQTL/data/LDSR_annotations/Munge/neut_eo_sum_N170384_narrow_form.munge \
    --merge-alleles /project2/yangili1/zpmu/ldsc/data/w_hm3.snplist \
    --chunksize 500000
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
 [1] forcats_0.3.0     stringr_1.3.1     dplyr_0.8.0.1    
 [4] purrr_0.3.2       readr_1.3.1       tidyr_0.8.3      
 [7] tibble_2.1.1      ggplot2_3.1.1     tidyverse_1.2.1  
[10] workflowr_1.6.0   data.table_1.12.0
loaded via a namespace (and not attached):
 [1] Rcpp_1.0.2       cellranger_1.1.0 plyr_1.8.4       compiler_3.5.1  
 [5] pillar_1.3.1     later_0.7.5      git2r_0.26.1     tools_3.5.1     
 [9] digest_0.6.18    lubridate_1.7.4  jsonlite_1.6     evaluate_0.12   
[13] nlme_3.1-137     gtable_0.2.0     lattice_0.20-38  pkgconfig_2.0.2 
[17] rlang_0.4.0      cli_1.1.0        rstudioapi_0.10  yaml_2.2.0      
[21] haven_1.1.2      withr_2.1.2      xml2_1.2.0       httr_1.3.1      
[25] knitr_1.20       hms_0.4.2        generics_0.0.2   fs_1.3.1        
[29] rprojroot_1.3-2  grid_3.5.1       tidyselect_0.2.5 glue_1.3.0      
[33] R6_2.3.0         readxl_1.1.0     rmarkdown_1.10   modelr_0.1.2    
[37] magrittr_1.5     whisker_0.3-2    backports_1.1.2  scales_1.0.0    
[41] promises_1.0.1   htmltools_0.3.6  rvest_0.3.2      assertthat_0.2.0
[45] colorspace_1.3-2 httpuv_1.4.5     labeling_0.3     stringi_1.2.4   
[49] lazyeval_0.2.1   munsell_0.5.0    broom_0.5.1      crayon_1.3.4