Last updated: 2020-02-21

Checks: 7 0

Knit directory: apaQTL/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190411) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/ProSeq/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  .Rprofile
    Untracked:  ._.DS_Store
    Untracked:  .gitignore
    Untracked:  @
    Untracked:  GEO_brimittleman/
    Untracked:  _workflowr.yml
    Untracked:  analysis/._PASdescriptiveplots.Rmd
    Untracked:  analysis/._cuttoffPercUsage.Rmd
    Untracked:  analysis/APApeak_Phenotype_GeneLocAnno.Nuclear.5perc.fc.gz.qqnorm.allChrom
    Untracked:  analysis/APApeak_Phenotype_GeneLocAnno.Total.5perc.fc.gz.qqnorm.allChrom
    Untracked:  analysis/QTLexampleplots.Rmd
    Untracked:  analysis/cuttoffPercUsage.Rmd
    Untracked:  analysis/eQTLoverlap.Rmd
    Untracked:  analysis/interpret verify bam.Rmd
    Untracked:  analysis/interpret_verifybam.Rmd
    Untracked:  analysis/mergeRNA.Rmd
    Untracked:  analysis/oldstuffNotNeeded.Rmd
    Untracked:  analysis/remove_badlines.Rmd
    Untracked:  analysis/totSpecInNuclear.Rmd
    Untracked:  analysis/totSpecIncludenotTested.Rmd
    Untracked:  analysis/totalspec.Rmd
    Untracked:  apaQTL.Rproj
    Untracked:  checksumsfastq.txt.gz
    Untracked:  code/.NascentRNAdtPlotFirstintronicPAS.sh.swp
    Untracked:  code/._Allsplicesite2fasta.py
    Untracked:  code/._ApaQTL_nominalNonnorm.sh
    Untracked:  code/._BothFracDTPlotGeneRegions.sh
    Untracked:  code/._BothFracDTPlotGeneRegions_normalized.sh
    Untracked:  code/._ClosestTissuePAS.sh
    Untracked:  code/._ColocApAeQTL.sh
    Untracked:  code/._ColocApAeQTL_PM.sh
    Untracked:  code/._Coloc_generalAPAeQTL.R
    Untracked:  code/._Coloc_generalAPAeQTL_PM.R
    Untracked:  code/._CreateRNALZforeQTLs.sh
    Untracked:  code/._CreateRNALZnucAPAqtls.sh
    Untracked:  code/._DistPAS2Sig_RandomIntron.py
    Untracked:  code/._EandPqtl_perm.sh
    Untracked:  code/._EandPqtls.sh
    Untracked:  code/._ExtractGene4eQTLLZ.py
    Untracked:  code/._ExtractGene4eQTLLZpy
    Untracked:  code/._ExtractGeneRNAAssoc.py
    Untracked:  code/._ExtractPAS4LZeQTLs.py
    Untracked:  code/._ExtractPAS4eQTLsLZ.sh
    Untracked:  code/._ExtractPASforLZ.py
    Untracked:  code/._ExtractPASforLZ_run.sh
    Untracked:  code/._FC_NucintornUpandDown.sh
    Untracked:  code/._FC_UTR.sh
    Untracked:  code/._FC_intornUpandDownsteamPAS.sh
    Untracked:  code/._FC_nascentseq.sh
    Untracked:  code/._FC_newPeaks_olddata.sh
    Untracked:  code/._HMMpermuteTotal.py
    Untracked:  code/._HmmPermute.py
    Untracked:  code/._IntronicPASDT.sh
    Untracked:  code/._LC_samplegroups.py
    Untracked:  code/._LD_qtl.sh
    Untracked:  code/._LD_snpsproxy.sh
    Untracked:  code/._MapAllRBP.sh
    Untracked:  code/._NascentRNAdtPlot.sh
    Untracked:  code/._NascentRNAdtPlot3UTRPAS.sh
    Untracked:  code/._NascentRNAdtPlotExcludeFirstintronicPAS.sh
    Untracked:  code/._NascentRNAdtPlotNucPAS.sh
    Untracked:  code/._NascentRNAdtPlotTotPAS.sh
    Untracked:  code/._NascentRNAdtPlotintronicPAS.sh
    Untracked:  code/._NascnetRNAdtPlotPAS.sh
    Untracked:  code/._NetSeq_fourthintronDT.sh
    Untracked:  code/._NomResfromPASSNP.py
    Untracked:  code/._NuclearPAS_5per.bed.py
    Untracked:  code/._NuclearandRNA5samp_dtplots.sh
    Untracked:  code/._PTTfacetboxplots.R
    Untracked:  code/._PrematureQTLNominal.sh
    Untracked:  code/._PrematureQTLPermuted.sh
    Untracked:  code/._QTL2bed.py
    Untracked:  code/._QTL2bed_withstrand.py
    Untracked:  code/._RBPdisrupt.sh
    Untracked:  code/._RNAbam2bw.sh
    Untracked:  code/._RNAseqDTplot.sh
    Untracked:  code/._Randomsplicesite2fasta.py
    Untracked:  code/._Rplots.pdf
    Untracked:  code/._RunRes2PAS.sh
    Untracked:  code/._SAF215upbed.py
    Untracked:  code/._SnakefilePAS
    Untracked:  code/._SnakefilefiltPAS
    Untracked:  code/._TESplots100bp.sh
    Untracked:  code/._TESplots150bp.sh
    Untracked:  code/._TESplots200bp.sh
    Untracked:  code/._TotalPAS_5perc.bed.py
    Untracked:  code/._Untitled
    Untracked:  code/._ZipandTabPheno.sh
    Untracked:  code/._aAPAqtl_nominal39ind.sh
    Untracked:  code/._allNucSpecQTLine.py
    Untracked:  code/._allNucSpecfromNonNorm.py
    Untracked:  code/._annotatePacBioPASregion.sh
    Untracked:  code/._annotatedPAS2bed.py
    Untracked:  code/._apaInPandE.py
    Untracked:  code/._apaQTLCorrectPvalMakeQQ.R
    Untracked:  code/._apaQTLCorrectpval_6or7a.R
    Untracked:  code/._apaQTL_Nominal.sh
    Untracked:  code/._apaQTL_nominalInclusive.sh
    Untracked:  code/._apaQTL_nominalv67.sh
    Untracked:  code/._apaQTL_permuted.sh
    Untracked:  code/._apaQTL_permuted_test6A7A.sh
    Untracked:  code/._apainRibo.py
    Untracked:  code/._assignNucIntonpeak2intronlocs.sh
    Untracked:  code/._assignTotIntronpeak2intronlocs.sh
    Untracked:  code/._bam2BW_5primemost.sh
    Untracked:  code/._bed2saf.py
    Untracked:  code/._bothFracDTplot1stintron.sh
    Untracked:  code/._bothFracDTplot4thintron.sh
    Untracked:  code/._bothFrac_FC.sh
    Untracked:  code/._callPeaksYL.py
    Untracked:  code/._changeRibonomQTLres2genename.py
    Untracked:  code/._changenomQTLres2geneName.py
    Untracked:  code/._chooseAnno2PAS_pacbio.py
    Untracked:  code/._chooseAnno2SAF.py
    Untracked:  code/._chooseSignalSite
    Untracked:  code/._chooseSignalSite.py
    Untracked:  code/._closestannotated.sh
    Untracked:  code/._closestannotated_byfrac.sh
    Untracked:  code/._cluster.json
    Untracked:  code/._clusterPAS.json
    Untracked:  code/._clusterfiltPAS.json
    Untracked:  code/._codingdms2bed.py
    Untracked:  code/._config.yaml
    Untracked:  code/._config2.yaml
    Untracked:  code/._configOLD.yaml
    Untracked:  code/._convertNominal2SNPLOC.py
    Untracked:  code/._convertNominal2SNPloc2Versions.py
    Untracked:  code/._convertNumeric.py
    Untracked:  code/._correctNomeqtl.R
    Untracked:  code/._createPlinkSampfile.py
    Untracked:  code/._dag.pdf
    Untracked:  code/._eQTL_switch2snploc.py
    Untracked:  code/._eQTLgenestestedapa.py
    Untracked:  code/._encodeRNADTplots.sh
    Untracked:  code/._extactPAS100meanphyloP.py
    Untracked:  code/._extractGeneLZfiles.sh
    Untracked:  code/._extractGeneLZfileseQTLs.sh
    Untracked:  code/._extractGenotypes.py
    Untracked:  code/._extractPACmeanPhyloP.py
    Untracked:  code/._extractPhylop50up.py
    Untracked:  code/._extractPhylopextra50.py
    Untracked:  code/._extractRNApval4lz.py
    Untracked:  code/._extractseqfromqtlfastq.py
    Untracked:  code/._fc2leafphen.py
    Untracked:  code/._fc_filteredPAS6and7As.sh
    Untracked:  code/._fifteenBPupstreamPAS.py
    Untracked:  code/._fiftyBPupstreamPAS.py
    Untracked:  code/._filter5perc.R
    Untracked:  code/._filter5percPheno.py
    Untracked:  code/._filterLDsnps.py
    Untracked:  code/._filterMPPAS.py
    Untracked:  code/._filterMPPAS_15.py
    Untracked:  code/._filterMPPAS_15_7As.py
    Untracked:  code/._filterMPPAS_50.py
    Untracked:  code/._filterSAFforMP.py
    Untracked:  code/._filterpeaks.py
    Untracked:  code/._finalPASbed2SAF.py
    Untracked:  code/._fix4su304corr.py
    Untracked:  code/._fix4su604corr.py
    Untracked:  code/._fix4sukalisto.py
    Untracked:  code/._fixExandUnexeQTL
    Untracked:  code/._fixExandUnexeQTL.py
    Untracked:  code/._fixFChead.py
    Untracked:  code/._fixFChead_bothfrac.py
    Untracked:  code/._fixFChead_short.py
    Untracked:  code/._fixGWAS4Munge.py
    Untracked:  code/._fixH3k12ac.py
    Untracked:  code/._fixPASregionSNPs.py
    Untracked:  code/._fixRNAhead4corr.py
    Untracked:  code/._fixRNAkalisto.py
    Untracked:  code/._fix_randomIntron.py
    Untracked:  code/._fixgroupedtranscript.py
    Untracked:  code/._fixhead_netseqfc.py
    Untracked:  code/._getAPAfromanyeQTL.py
    Untracked:  code/._getApapval4eqtl.py
    Untracked:  code/._getApapval4eqtl_unexp.py
    Untracked:  code/._getApapval4eqtl_version67.py
    Untracked:  code/._getDownstreamIntronNuclear.py
    Untracked:  code/._getIntronDownstreamPAS.py
    Untracked:  code/._getIntronUpstreamPAS.py
    Untracked:  code/._getQTLalleles.py
    Untracked:  code/._getQTLfastq.sh
    Untracked:  code/._getUpstreamIntronNuclear.py
    Untracked:  code/._grouptranscripts.py
    Untracked:  code/._intersectVCFandupPAS.sh
    Untracked:  code/._keep5perMAF.py
    Untracked:  code/._keepSNP_vcf.sh
    Untracked:  code/._make5percPeakbed.py
    Untracked:  code/._makeFileID.py
    Untracked:  code/._makePheno.py
    Untracked:  code/._makeSAFbothfrac5perc.py
    Untracked:  code/._makeSNP2rsidfile.py
    Untracked:  code/._makeeQTLempirical_unexp.py
    Untracked:  code/._makeeQTLempiricaldist.py
    Untracked:  code/._makegencondeTSSfile.py
    Untracked:  code/._mapSSsnps2PAS.sh
    Untracked:  code/._mergRNABam.sh
    Untracked:  code/._mergeAllBam.sh
    Untracked:  code/._mergeAnnotations.sh
    Untracked:  code/._mergeBW_norm.sh
    Untracked:  code/._mergeBamNascent.sh
    Untracked:  code/._mergeByFracBam.sh
    Untracked:  code/._mergePeaks.sh
    Untracked:  code/._miRNAdisrupt.sh
    Untracked:  code/._mnase1stintron.sh
    Untracked:  code/._mnaseDT_fourthintron.sh
    Untracked:  code/._namePeaks.py
    Untracked:  code/._netseqDTplot1stIntron.sh
    Untracked:  code/._netseqFC.sh
    Untracked:  code/._nucQTLGWAS.py
    Untracked:  code/._nucSpecQTLineData.py
    Untracked:  code/._nucSpeceffectsize.py
    Untracked:  code/._nucspecnucPASine.py
    Untracked:  code/._pQTLsotherdata.py
    Untracked:  code/._pacbioDT.sh
    Untracked:  code/._pacbioIntronicDT.sh
    Untracked:  code/._parseALLSSres.py
    Untracked:  code/._parseBestbamid.py
    Untracked:  code/._parseLDRes.py
    Untracked:  code/._parseLDresBothPAS.sh
    Untracked:  code/._parseRanodmSSres.py
    Untracked:  code/._parseSSres.py
    Untracked:  code/._peak2PAS.py
    Untracked:  code/._peakFC.sh
    Untracked:  code/._pheno2countonly.R
    Untracked:  code/._phenoQTLfromlist.py
    Untracked:  code/._processYRIgen.py
    Untracked:  code/._pttQTLsinapaQTL.py
    Untracked:  code/._qtlRegionseq.sh
    Untracked:  code/._qtlsPvalOppFrac.py
    Untracked:  code/._quantassign2parsedpeak.py
    Untracked:  code/._removeXfromHmm.py
    Untracked:  code/._removeloc_pheno.py
    Untracked:  code/._riboQTL.sh
    Untracked:  code/._runCorrectNomEqtl.sh
    Untracked:  code/._runFixGWAS4Munge.sh
    Untracked:  code/._runHMMpermuteAPAqtls.sh
    Untracked:  code/._runHMMpermuteeQTLS.sh
    Untracked:  code/._runMakeEmpiricaleQTL_unexp.sh
    Untracked:  code/._runMakeeQTLempirical.sh
    Untracked:  code/._run_bam2bw_all3prime.sh
    Untracked:  code/._run_bam2bw_extra3.sh
    Untracked:  code/._run_bestbamid.sj
    Untracked:  code/._run_dist2sig_randomintron.sh
    Untracked:  code/._run_filtersnpLD.sh
    Untracked:  code/._run_getAPAfromeQTL_version6.7.sh
    Untracked:  code/._run_getApaPval4eqtl.sh
    Untracked:  code/._run_getapafromeQTL.py
    Untracked:  code/._run_getapafromeQTL.sh
    Untracked:  code/._run_getapapval4eqtl_unexp.sh
    Untracked:  code/._run_leafcutterDiffIso.sh
    Untracked:  code/._run_prxySNP.sh
    Untracked:  code/._run_pttfacetboxplot.sh
    Untracked:  code/._run_sepUsagephen.sh
    Untracked:  code/._run_sepgenobychrom.sh
    Untracked:  code/._run_verifybam.sh
    Untracked:  code/._selectNominalPvalues.py
    Untracked:  code/._sepUsagePhen.py
    Untracked:  code/._sepgenobychrom.py
    Untracked:  code/._snakemakePAS.batch
    Untracked:  code/._snakemakefiltPAS.batch
    Untracked:  code/._sortindexRNAbam.sh
    Untracked:  code/._specAPAinE.py
    Untracked:  code/._splicesite2fasta.py
    Untracked:  code/._submit-snakemakePAS.sh
    Untracked:  code/._submit-snakemakefiltPAS.sh
    Untracked:  code/._subsetAPAnotEorPgene.py
    Untracked:  code/._subsetAPAnotEorPgene_2versions.py
    Untracked:  code/._subsetAPAnotEorR.py
    Untracked:  code/._subsetApanoteGene.py
    Untracked:  code/._subsetApanoteGene_2versions.py
    Untracked:  code/._subsetUnexplainedeQTLs.py
    Untracked:  code/._subsetVCF_SS.sh
    Untracked:  code/._subsetVCF_noSSregions.sh
    Untracked:  code/._subsetVCF_upstreamPAS.sh
    Untracked:  code/._subset_diffisopheno.py
    Untracked:  code/._subsetpermAPAwithGenelist.py
    Untracked:  code/._subsetpermAPAwithGenelist_2versions.py
    Untracked:  code/._subsetvcf_otherreg.sh
    Untracked:  code/._subsetvcf_permSS.sh
    Untracked:  code/._subtrachfiveprimeUTR.sh
    Untracked:  code/._subtractExons.sh
    Untracked:  code/._subtractfiveprimeUTR.sh
    Untracked:  code/._tabixSNPS.sh
    Untracked:  code/._tenBPupstreamPAS.py
    Untracked:  code/._test.pdf
    Untracked:  code/._testVerifyBam.sh
    Untracked:  code/._tissuePAS2hg19.sh
    Untracked:  code/._totSeceffectsize.py
    Untracked:  code/._twentyBPupstreamPAS.py
    Untracked:  code/._utrdms2saf.py
    Untracked:  code/._vcf2bed.py
    Untracked:  code/._verifyBam18517N.sh
    Untracked:  code/._verifyBam18517T.sh
    Untracked:  code/._verifyBam19128N.sh
    Untracked:  code/._verifyBam19128T.sh
    Untracked:  code/._wrap_verifybam.sh
    Untracked:  code/._writePTTexamplecode.py
    Untracked:  code/._writePTTexamplecode.sh
    Untracked:  code/.pversion
    Untracked:  code/.snakemake/
    Untracked:  code/1
    Untracked:  code/APAqtl_nominal.err
    Untracked:  code/APAqtl_nominal.out
    Untracked:  code/APAqtl_nominal_39.err
    Untracked:  code/APAqtl_nominal_39.out
    Untracked:  code/APAqtl_nominal_inclusive.err
    Untracked:  code/APAqtl_nominal_inclusive.out
    Untracked:  code/APAqtl_nominal_nonNorm.err
    Untracked:  code/APAqtl_nominal_nonNorm.out
    Untracked:  code/APAqtl_nominal_versions67.err
    Untracked:  code/APAqtl_nominal_versions67.out
    Untracked:  code/APAqtl_permuted.err
    Untracked:  code/APAqtl_permuted.out
    Untracked:  code/APAqtl_permuted_versions67.err
    Untracked:  code/APAqtl_permuted_versions67.out
    Untracked:  code/Allsplicesite2fasta.py
    Untracked:  code/BothFracDTPlot1stintron.err
    Untracked:  code/BothFracDTPlot1stintron.out
    Untracked:  code/BothFracDTPlot4stintron.err
    Untracked:  code/BothFracDTPlot4stintron.out
    Untracked:  code/BothFracDTPlotGeneRegions.err
    Untracked:  code/BothFracDTPlotGeneRegions.out
    Untracked:  code/BothFracDTPlotGeneRegions_norm.err
    Untracked:  code/BothFracDTPlotGeneRegions_norm.out
    Untracked:  code/ClosestTissuePAS.sh
    Untracked:  code/ColocApAeQTL.err
    Untracked:  code/ColocApAeQTL.out
    Untracked:  code/ColocApAeQTL.sh
    Untracked:  code/ColocApAeQTLPM.err
    Untracked:  code/ColocApAeQTLPM.out
    Untracked:  code/ColocApAeQTL_PM.sh
    Untracked:  code/Coloc_generalAPAeQTL.R
    Untracked:  code/Coloc_generalAPAeQTL_PM.R
    Untracked:  code/CreateRNALZforeQTLs.sh
    Untracked:  code/CreateRNALZnucAPAqtls.sh
    Untracked:  code/DistPAS2Sig_RandomIntron.py
    Untracked:  code/EandPqtl.err
    Untracked:  code/EandPqtl.out
    Untracked:  code/EncodeRNADTPlotGeneRegions.err
    Untracked:  code/EncodeRNADTPlotGeneRegions.out
    Untracked:  code/ExtractGene4eQTLLZ.py
    Untracked:  code/ExtractGene4eQTLLZpy
    Untracked:  code/ExtractGeneRNAAssoc.py
    Untracked:  code/ExtractPAS4LZeQTLs.py
    Untracked:  code/ExtractPAS4eQTLsLZ.sh
    Untracked:  code/ExtractPASforLZ.py
    Untracked:  code/ExtractPASforLZ_run.sh
    Untracked:  code/FC_NucintronPASupandDown.err
    Untracked:  code/FC_NucintronPASupandDown.out
    Untracked:  code/FC_UTR.err
    Untracked:  code/FC_UTR.out
    Untracked:  code/FC_intronPASupandDown.err
    Untracked:  code/FC_intronPASupandDown.out
    Untracked:  code/FC_nascent.err
    Untracked:  code/FC_nascentout
    Untracked:  code/FC_newPAS_olddata.err
    Untracked:  code/FC_newPAS_olddata.out
    Untracked:  code/HmmPermute.p
    Untracked:  code/IntronicPASDT.err
    Untracked:  code/IntronicPASDT.out
    Untracked:  code/LD_vcftools.hap.out
    Untracked:  code/MapAllRBP.sh
    Untracked:  code/MapRBP.err
    Untracked:  code/MapRBP.out
    Untracked:  code/NascentDTPlotGeneRegions.err
    Untracked:  code/NascentDTPlotGeneRegions.out
    Untracked:  code/NascentDTPlotPAS.err
    Untracked:  code/NascentDTPlotPAS.out
    Untracked:  code/NascentDTPlotPAS_3utr.err
    Untracked:  code/NascentDTPlotPAS_3utr.out
    Untracked:  code/NascentDTPlotPAS_firstintron.err
    Untracked:  code/NascentDTPlotPAS_firstintron.out
    Untracked:  code/NascentDTPlotPAS_intron.err
    Untracked:  code/NascentDTPlotPAS_intron.out
    Untracked:  code/NascentDTPlotPAS_nuc.err
    Untracked:  code/NascentDTPlotPAS_nuc.out
    Untracked:  code/NascentDTPlotPAS_tot.err
    Untracked:  code/NascentDTPlotPAS_tot.out
    Untracked:  code/Nuclear_example.err
    Untracked:  code/Nuclear_example.out
    Untracked:  code/NuclearandRNA5samp_dtplots.sh
    Untracked:  code/NuclearandRNAFracDTPlotGeneRegions.err
    Untracked:  code/NuclearandRNAFracDTPlotGeneRegions.out
    Untracked:  code/PACbioDT.err
    Untracked:  code/PACbioDT.out
    Untracked:  code/PACbioDTitronic.err
    Untracked:  code/PACbioDTitronic.out
    Untracked:  code/Prematureqtl_nominal.err
    Untracked:  code/Prematureqtl_nominal.out
    Untracked:  code/Prematureqtl_permuted.err
    Untracked:  code/Prematureqtl_permuted.out
    Untracked:  code/RBPdisrupt.err
    Untracked:  code/RBPdisrupt.out
    Untracked:  code/RBPdisrupt.sh
    Untracked:  code/README.md
    Untracked:  code/RNABam2BW.err
    Untracked:  code/RNABam2BW.out
    Untracked:  code/RNAseqDTPlotGeneRegions.err
    Untracked:  code/RNAseqDTPlotGeneRegions.out
    Untracked:  code/Randomsplicesite2fasta.py
    Untracked:  code/Rplots.pdf
    Untracked:  code/TESplots100bp.err
    Untracked:  code/TESplots100bp.out
    Untracked:  code/TESplots150bp.err
    Untracked:  code/TESplots150bp.out
    Untracked:  code/TESplots200bp.err
    Untracked:  code/TESplots200bp.out
    Untracked:  code/Tissueclosestannotated.err
    Untracked:  code/Tissueclosestannotated.out
    Untracked:  code/Total_example.err
    Untracked:  code/Total_example.out
    Untracked:  code/Untitled
    Untracked:  code/YRI_LCL.vcf.gz
    Untracked:  code/YRI_LCL_chr1.vcf.gz.log
    Untracked:  code/YRI_LCL_chr1.vcf.gz.recode.vcf
    Untracked:  code/annotatedPASregion.err
    Untracked:  code/annotatedPASregion.out
    Untracked:  code/apaQTL_nominalInclusive.sh
    Untracked:  code/assignPeak2Intronicregion.err
    Untracked:  code/assignPeak2Intronicregion.out
    Untracked:  code/assigntotPeak2Intronicregion.err
    Untracked:  code/assigntotPeak2Intronicregion.out
    Untracked:  code/bam2bw.err
    Untracked:  code/bam2bw.out
    Untracked:  code/bam2bw_5primemost.err
    Untracked:  code/bam2bw_5primemost.out
    Untracked:  code/binary_fileset.log
    Untracked:  code/bothFrac_FC.err
    Untracked:  code/bothFrac_FC.out
    Untracked:  code/callSHscripts.txt
    Untracked:  code/closestannotated.err
    Untracked:  code/closestannotated.out
    Untracked:  code/closestannotatedbyfrac.err
    Untracked:  code/closestannotatedbyfrac.out
    Untracked:  code/dag.pdf
    Untracked:  code/dagPAS.pdf
    Untracked:  code/dagfiltPAS.pdf
    Untracked:  code/extactPAS100meanphyloP.py
    Untracked:  code/extractGeneLZfiles.err
    Untracked:  code/extractGeneLZfiles.out
    Untracked:  code/extractGeneLZfiles.sh
    Untracked:  code/extractGeneLZfileseQTLs.err
    Untracked:  code/extractGeneLZfileseQTLs.out
    Untracked:  code/extractGeneLZfileseQTLs.sh
    Untracked:  code/extractPACmeanPhyloP.py
    Untracked:  code/extractPASLZfiles.err
    Untracked:  code/extractPASLZfiles.out
    Untracked:  code/extractPASLZfileseQTLs.err
    Untracked:  code/extractPASLZfileseQTLs.out
    Untracked:  code/extractPhylop50up.py
    Untracked:  code/extractPhylopextra50.py
    Untracked:  code/extractRNApval4lz.py
    Untracked:  code/fixExandUnexeQTL
    Untracked:  code/fixGWAS4Munge.py
    Untracked:  code/fix_randomIntron.py
    Untracked:  code/fixmunge
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.log
    Untracked:  code/genotypesYRI.gen.proc.keep.vcf.recode.vcf
    Untracked:  code/getseq100up.err
    Untracked:  code/getseq100up.out
    Untracked:  code/grouptranscripts.err
    Untracked:  code/grouptranscripts.out
    Untracked:  code/intersectPAS_ssSNPS.err
    Untracked:  code/intersectPAS_ssSNPS.out
    Untracked:  code/intersectVCFPAS.err
    Untracked:  code/intersectVCFPAS.out
    Untracked:  code/liftoverPAShg38to19.err
    Untracked:  code/liftoverPAShg38to19.out
    Untracked:  code/log/
    Untracked:  code/logs/
    Untracked:  code/merge53PRIMEbam.err
    Untracked:  code/merge53PRIMEbam.out
    Untracked:  code/merge53RNAbam.err
    Untracked:  code/merge53prime.sh
    Untracked:  code/merge5RNABam.err
    Untracked:  code/merge5RNABam.out
    Untracked:  code/merge5RNAbam.out
    Untracked:  code/merge5RNAbam.sh
    Untracked:  code/mergeAnno.err
    Untracked:  code/mergeAnno.out
    Untracked:  code/mergeBWnorm.err
    Untracked:  code/mergeBWnorm.out
    Untracked:  code/mergeBamNacent.err
    Untracked:  code/mergeBamNacent.out
    Untracked:  code/mergeRNAbam.err
    Untracked:  code/mergeRNAbam.out
    Untracked:  code/miRNAdisrupt.err
    Untracked:  code/miRNAdisrupt.out
    Untracked:  code/miRNAdisrupt.sh
    Untracked:  code/mnaseDTPlot1stintron.err
    Untracked:  code/mnaseDTPlot1stintron.out
    Untracked:  code/mnaseDTPlot4thintron.err
    Untracked:  code/mnaseDTPlot4thintron.out
    Untracked:  code/netDTPlot4thintron.out
    Untracked:  code/netseqFC.err
    Untracked:  code/netseqFC.out
    Untracked:  code/neyDTPlot4thintron.err
    Untracked:  code/nucspecinE.py
    Untracked:  code/parseALLSSres.py
    Untracked:  code/parseLDRes.py
    Untracked:  code/parseLDres.err
    Untracked:  code/parseLDres.out
    Untracked:  code/parseLDresBothPAS.sh
    Untracked:  code/parseRanodmSSres.py
    Untracked:  code/parseSSres.py
    Untracked:  code/plink.log
    Untracked:  code/prxySNP.err
    Untracked:  code/prxySNP.out
    Untracked:  code/pttFacetBoxplots.err
    Untracked:  code/pttFacetBoxplots.out
    Untracked:  code/qtlFacetBoxplots.err
    Untracked:  code/qtlFacetBoxplots.out
    Untracked:  code/rLD_vcftools.hap.err
    Untracked:  code/riboqtl.err
    Untracked:  code/riboqtl.out
    Untracked:  code/runBestBamID.err
    Untracked:  code/runCorrectNomeqtl.err
    Untracked:  code/runCorrectNomeqtl.out
    Untracked:  code/runFilterLD.err
    Untracked:  code/runFilterLD.out
    Untracked:  code/runFixGWAS4Munge.sh
    Untracked:  code/runHMMpermute.err
    Untracked:  code/runHMMpermute.out
    Untracked:  code/runHMMpermuteeQTLs.err
    Untracked:  code/runHMMpermuteeQTLs.out
    Untracked:  code/runMakeEmpiricaleQTLs.err
    Untracked:  code/runMakeEmpiricaleQTLs.out
    Untracked:  code/runMakeEmpiricaleQTLsunex.err
    Untracked:  code/runMakeEmpiricaleQTLsunex.out
    Untracked:  code/run_DistPAS2Sig.err
    Untracked:  code/run_DistPAS2Sig.out
    Untracked:  code/run_DistPAS2Sig_intron.err
    Untracked:  code/run_DistPAS2Sig_intron.out
    Untracked:  code/run_bam2bw.err
    Untracked:  code/run_bam2bw.out
    Untracked:  code/run_bam2bwexta.err
    Untracked:  code/run_bam2bwexta.out
    Untracked:  code/run_dist2sig_randomintron.sh
    Untracked:  code/run_getAPAfromanyeQTL.err
    Untracked:  code/run_getAPAfromanyeQTL.out
    Untracked:  code/run_getApaPval4eQTLs.err
    Untracked:  code/run_getApaPval4eQTLs.out
    Untracked:  code/run_getApaPval4eQTLsunexplained.err
    Untracked:  code/run_getApaPval4eQTLsunexplained.out
    Untracked:  code/run_leafcutter_ds.err
    Untracked:  code/run_leafcutter_ds.out
    Untracked:  code/run_sepgenobychrom.err
    Untracked:  code/run_sepgenobychrom.out
    Untracked:  code/run_sepusage.err
    Untracked:  code/run_sepusage.out
    Untracked:  code/run_verifybam.err
    Untracked:  code/run_verifybam.out
    Untracked:  code/run_verifybam128N.err
    Untracked:  code/run_verifybam128N.out
    Untracked:  code/run_verifybam128T.err
    Untracked:  code/run_verifybam128T.out
    Untracked:  code/run_verifybam517N.err
    Untracked:  code/run_verifybam517N.out
    Untracked:  code/run_verifybam517T.err
    Untracked:  code/run_verifybam517T.out
    Untracked:  code/runprxySNP.err
    Untracked:  code/runprxySNP.out
    Untracked:  code/runres2pas.err
    Untracked:  code/runres2pas.out
    Untracked:  code/scripts/
    Untracked:  code/scripts_PAS_500_Lymph/
    Untracked:  code/seqQTLfastq.err
    Untracked:  code/seqQTLfastq.out
    Untracked:  code/seqQTLregion.err
    Untracked:  code/seqQTLregion.out
    Untracked:  code/snakePASlog.out
    Untracked:  code/snakefiltPASlog.out
    Untracked:  code/sortindexRNABam.err
    Untracked:  code/sortindexRNABam.out
    Untracked:  code/specAPAinE.py
    Untracked:  code/splicesite2fasta.py
    Untracked:  code/subsetAPAnotEorR.py
    Untracked:  code/subsetvcf_SS.err
    Untracked:  code/subsetvcf_SS.out
    Untracked:  code/subsetvcf_noSS.err
    Untracked:  code/subsetvcf_noSS.out
    Untracked:  code/subsetvcf_pas.err
    Untracked:  code/subsetvcf_pas.out
    Untracked:  code/subsetvcf_perm.err
    Untracked:  code/subsetvcf_perm.out
    Untracked:  code/subsetvcf_rand.err
    Untracked:  code/subsetvcf_rand.out
    Untracked:  code/subtract5UTR.err
    Untracked:  code/subtract5UTR.out
    Untracked:  code/subtractExons.err
    Untracked:  code/subtractExons.out
    Untracked:  code/tabixSNPs.err
    Untracked:  code/tabixSNPs.out
    Untracked:  code/test.pdf
    Untracked:  code/testFix.txt
    Untracked:  code/test_verifybam.err
    Untracked:  code/test_verifybam.out
    Untracked:  code/tissuePAS2hg19.sh
    Untracked:  code/vcf_keepsnps.err
    Untracked:  code/vcf_keepsnps.out
    Untracked:  code/wrap_verifybam.err
    Untracked:  code/wrap_verifybam.out
    Untracked:  code/zipandtabPhen.err
    Untracked:  code/zipandtabPhen.out
    Untracked:  data/._.DS_Store
    Untracked:  data/._MetaDataSequencing.txt
    Untracked:  data/AnnotatedPAS/
    Untracked:  data/ApaByEgene/
    Untracked:  data/ApaByPgene/
    Untracked:  data/ApaByRgene/
    Untracked:  data/BadLines/
    Untracked:  data/BaseComp/
    Untracked:  data/Battle_pQTL/
    Untracked:  data/CheckSums/
    Untracked:  data/CompareOldandNew/
    Untracked:  data/DTmatrix/
    Untracked:  data/DiffIso/
    Untracked:  data/EncodeRNA/
    Untracked:  data/ExampleQTLPlots/
    Untracked:  data/ExampleQTLPlots_update/
    Untracked:  data/ExpressionIndependentapaQTLs.txt
    Untracked:  data/FiveMergedBW/
    Untracked:  data/FiveMergedBam/
    Untracked:  data/FlaggedPAS/
    Untracked:  data/GWAS_overlap/
    Untracked:  data/GeuvadisRNA/
    Untracked:  data/GeuvadiseQTL/
    Untracked:  data/HMMqtls/
    Untracked:  data/LDSR_annotations/
    Untracked:  data/LZ_both/
    Untracked:  data/Li_eQTLs/
    Untracked:  data/NMD/
    Untracked:  data/NascentRNA/
    Untracked:  data/NucSpeceQTLeffect/
    Untracked:  data/PAS/
    Untracked:  data/PAS_postFlag/
    Untracked:  data/PolyA_DB/
    Untracked:  data/PreTerm_pheno/
    Untracked:  data/PrematureQTLNominal/
    Untracked:  data/PrematureQTLPermuted/
    Untracked:  data/QTLGenotypes/
    Untracked:  data/QTLoverlap/
    Untracked:  data/QTLoverlap_inclusive/
    Untracked:  data/QTLoverlap_nonNorm/
    Untracked:  data/README.md
    Untracked:  data/RNAseq/
    Untracked:  data/Reads2UTR/
    Untracked:  data/SNPinSS/
    Untracked:  data/SignalSiteFiles/
    Untracked:  data/TF_motifdisruption/
    Untracked:  data/TSS/
    Untracked:  data/ThirtyNineIndQtl_nominal/
    Untracked:  data/TissueData/
    Untracked:  data/Version15bp6As/
    Untracked:  data/Version15bp7As/
    Untracked:  data/apaQTLNominal/
    Untracked:  data/apaQTLNominal_4pc/
    Untracked:  data/apaQTLNominal_inclusive/
    Untracked:  data/apaQTLPermuted/
    Untracked:  data/apaQTLPermuted_4pc/
    Untracked:  data/apaQTLs/
    Untracked:  data/assignedPeaks/
    Untracked:  data/assignedPeaks_15Up/
    Untracked:  data/bam/
    Untracked:  data/bam_clean/
    Untracked:  data/bam_waspfilt/
    Untracked:  data/bed_10up/
    Untracked:  data/bed_clean/
    Untracked:  data/bed_clean_sort/
    Untracked:  data/bed_waspfilter/
    Untracked:  data/bedsort_waspfilter/
    Untracked:  data/bothFrac_FC/
    Untracked:  data/bw/
    Untracked:  data/bw_norm/
    Untracked:  data/coloc/
    Untracked:  data/coloc_PM/
    Untracked:  data/eCLip/
    Untracked:  data/eQTL_LZ/
    Untracked:  data/eQTLs/
    Untracked:  data/exampleQTLs/
    Untracked:  data/exosome/
    Untracked:  data/fastq/
    Untracked:  data/filterPeaks/
    Untracked:  data/fourSU/
    Untracked:  data/h3k27ac/
    Untracked:  data/highdiffsiggenes.txt
    Untracked:  data/inclusivePeaks/
    Untracked:  data/inclusivePeaks_FC/
    Untracked:  data/intronRNAratio/
    Untracked:  data/intron_analysis/
    Untracked:  data/locusZoom/
    Untracked:  data/mergedBG/
    Untracked:  data/mergedBW_byfrac/
    Untracked:  data/mergedBW_norm/
    Untracked:  data/mergedBam/
    Untracked:  data/mergedbyFracBam/
    Untracked:  data/miRNAbinding/
    Untracked:  data/molPhenos/
    Untracked:  data/molQTLs/
    Untracked:  data/motifdistrupt/
    Untracked:  data/nPAS/
    Untracked:  data/netseq/
    Untracked:  data/nonNorm_pheno/
    Untracked:  data/nuc_10up/
    Untracked:  data/nuc_10upclean/
    Untracked:  data/oldPASfiles/
    Untracked:  data/overlapeQTL_try2/
    Untracked:  data/overlapeQTLs/
    Untracked:  data/pQTLoverlap/
    Untracked:  data/pacbio/
    Untracked:  data/peakCoverage/
    Untracked:  data/peaks_5perc/
    Untracked:  data/phenotype/
    Untracked:  data/phenotype_5perc/
    Untracked:  data/phenotype_inclusivePAS/
    Untracked:  data/phylop/
    Untracked:  data/pttQTL/
    Untracked:  data/pttQTLplots/
    Untracked:  data/sigDiffGenes.txt
    Untracked:  data/sort/
    Untracked:  data/sort_clean/
    Untracked:  data/sort_waspfilter/
    Untracked:  data/splicesite/
    Untracked:  data/twoMech/
    Untracked:  data/vareQTLvarAPAqtl/
    Untracked:  data/verifyBAM/
    Untracked:  data/verifyBAM_full/
    Untracked:  nohup.out
    Untracked:  output/._.DS_Store
    Untracked:  output/._AverageDiffHeatmap.Nuclear.png
    Untracked:  output/._AverageDiffHeatmap.Total.png
    Untracked:  output/._GeneswithAPApotential.png
    Untracked:  output/._GeneswithAPApotentialAllPAS.png
    Untracked:  output/._PASlocation.png
    Untracked:  output/._SignalSitePlot.png
    Untracked:  output/._meanCorrelationPhenotypes.svg
    Untracked:  output/._qqplot_Nuclear_APAperm.png
    Untracked:  output/._qqplot_Nuclear_APAperm_4pc.png
    Untracked:  output/._qqplot_Total_APAperm.png
    Untracked:  output/._qqplot_Total_APAperm_4pc.png
    Untracked:  output/AverageDiffHeatmap.Nuclear.png
    Untracked:  output/AverageDiffHeatmap.Total.png
    Untracked:  output/GeneswithAPApotential.png
    Untracked:  output/GeneswithAPApotentialAllPAS.png
    Untracked:  output/PASlocation.png
    Untracked:  output/SignalSitePlot.png
    Untracked:  output/SignalSitePlotbyLoc.png
    Untracked:  output/dtPlots/
    Untracked:  output/fastqc/
    Untracked:  output/meanCorrelationPhenotypes.svg
    Untracked:  output/newnuc.png
    Untracked:  output/newtot.png
    Untracked:  output/oldnuc.png
    Untracked:  output/oldtot.png
    Untracked:  output/qqplot_Nuclear_APAperm.png
    Untracked:  output/qqplot_Nuclear_APAperm_4pc.png
    Untracked:  output/qqplot_Total_APAperm.png
    Untracked:  output/qqplot_Total_APAperm_4pc.png
    Untracked:  run_verifybam517N.err
    Untracked:  run_verifybam517N.out

Unstaged changes:
    Modified:   analysis/ExploreNpas.Rmd
    Modified:   analysis/NuclearSpecIncludeNotTested.Rmd
    Modified:   analysis/PASdescriptiveplots.Rmd
    Modified:   analysis/Readdistagainstfeatures.Rmd
    Modified:   analysis/TSS.Rmd
    Modified:   analysis/decayAndStability.Rmd
    Modified:   analysis/miRNAdisrupt.Rmd
    Modified:   analysis/nascenttranscription.Rmd
    Modified:   analysis/nucSpecinEQTLs.Rmd
    Modified:   analysis/overlapapaqtlsandeqtls.Rmd
    Modified:   analysis/pQTLexampleplot.Rmd
    Modified:   analysis/version15bpfilter.Rmd
    Modified:   code/DistPAS2Sig.py
    Modified:   code/Script4NuclearQTLexamples.sh
    Modified:   code/Script4TotalQTLexamples.sh
    Modified:   code/apaQTLsnake.err
    Modified:   code/environment.yaml
    Modified:   code/run_qtlFacetBoxplots.sh
    Deleted:    code/test.txt
    Deleted:    reads_graphs.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 6788234 brimittleman 2020-02-21 add PM res
html 1ca62a2 brimittleman 2020-02-20 Build site.
Rmd 662a604 brimittleman 2020-02-20 add riboqq and PM coloc
html 3c417f0 brimittleman 2020-02-20 Build site.
Rmd f3472bb brimittleman 2020-02-20 add coloc code and red
html af31082 brimittleman 2020-02-20 Build site.
Rmd d2056c1 brimittleman 2020-02-20 add lcls, add coloc package, add 5’ss by decile

Attempt a colocalziation analysis for the eQTLs and the snps in the nuclear QTL data.

mkdir ../data/coloc
wget http://eqtl.uchicago.edu/jointLCL/output_RNAseqGeuvadis_PC14.txt
#install.packages("coloc")
library(snpStats)
Loading required package: survival
Loading required package: Matrix
library(cowplot)
Loading required package: ggplot2

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave
library(data.table)
library(tidyverse)
── Attaching packages ─────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ tibble  2.1.1       ✔ purrr   0.3.2  
✔ tidyr   0.8.3       ✔ dplyr   0.8.0.1
✔ readr   1.3.1       ✔ stringr 1.3.1  
✔ tibble  2.1.1       ✔ forcats 0.3.0  
── Conflicts ────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::between()   masks data.table::between()
✖ tidyr::expand()    masks Matrix::expand()
✖ dplyr::filter()    masks stats::filter()
✖ dplyr::first()     masks data.table::first()
✖ cowplot::ggsave()  masks ggplot2::ggsave()
✖ dplyr::lag()       masks stats::lag()
✖ dplyr::last()      masks data.table::last()
✖ purrr::transpose() masks data.table::transpose()
library("coloc")

First change the names of the rsid and gene.

geneNames=read.table("../../genome_anotation_data/ensemble_to_genename.txt", sep="\t", col.names = c('gene_id', 'GeneName', 'source' ),stringsAsFactors = F, header = T)
RSID=read.table("/project2/gilad/briana/li_genotypes/RSID2snploc.txt",header = T, stringsAsFactors = F)
#ed 's/^chr//' output_RNAseqGeuvadis_PC14.txt  > output_RNAseqGeuvadis_PC14.noChr.txt 

eQTLres=read.table("../data/coloc/output_RNAseqGeuvadis_PC14.noChr.txt",header = T, stringsAsFactors = F)  %>% separate(snps,into=c("chr", "pos"), sep="\\.")%>% separate(gene,into=c("gene_id", "extra"), sep="\\.")  %>% mutate(snp=paste(chr,pos, sep=":")) %>% inner_join(RSID,by="snp") %>% inner_join(geneNames, by="gene_id") %>% select(RSID, GeneName,pvalue, beta)

I will be able to seperate these for the coloc analysis. I need the PAS gene pairs.

PASgene=read.table("../data/eQTL_LZ/PasGENEsnpstoUse.txt",stringsAsFactors = F, col.names = c("GeneName", "PAS", "RSID") ) 

Test if these are in the file above:

eQTLres_genesnp=eQTLres %>% mutate(test=paste(GeneName, RSID, sep="_")) %>% select(test)
PASgene_test= PASgene %>%  mutate(test=paste(GeneName, RSID, sep="_")) %>% select(test)


PASgene_indata= PASgene_test %>% inner_join(eQTLres_genesnp, by="test")

PASgene_indata= PASgene_test %>% anti_join(eQTLres_genesnp, by="test")

181 of the snp gene pairs are in this data.

Test on one first. c10orf88

Need:

p values for each SNP each SNP’s minor allele frequency sample size

C10orf88_rs7904973

PASgene_c10orf88= PASgene %>% filter(GeneName=="C10orf88")
PASgene_c10orf88
  GeneName       PAS      RSID
1 C10orf88 peak19682 rs7904973
PeakData=read.table("../data/eQTL_LZ/NuclearAssoc/peak19682_NuclearResults4LZ.txt",col.names = c("RSID","Pvalue_APA"),stringsAsFactors = F) %>% mutate(sampleSizeAPA=52)

GeneData=eQTLres %>% filter(GeneName=="C10orf88")

Number of overlapping snps:

length(intersect(PeakData$RSID,GeneData$RSID ))
[1] 123
nrow(GeneData)
[1] 123
nrow(PeakData)
[1] 2550
ind=read.table("../data/molPhenos/RNAhead.txt", header = F)
dim(ind)[2]-4
[1] 69
Genenomnames=c("gene", 'snp','dist', 'pval', 'slope')
c10orf88eqtl=read.table("../data/coloc/eQTL_c10orf88.txt",col.names = Genenomnames,stringsAsFactors = F) %>% mutate(SampleSizeE=69) %>% inner_join(RSID, by="snp")

Get freq for the snps in allChrom.dose.filt.vcf. these are the filtered snps from john. not the li snps but should include those i need and they have the same 119 ind.

module load vcftools


vcftools --vcf allChrom.dose.filt.vcf   --freq --out allChrom.dose.filt_freq
snpmaf=fread("/project2/gilad/briana/YRI_geno_hg19/allChrom.dose.filt_freq.frq",skip = 1, col.names = c("chr", "loc", "nAlles", "nchr", "allele1", "allele2")) %>% mutate(snp=paste(chr, loc, sep=":")) %>% separate("allele2", into=c("allele", "MAF2"), sep=":") %>%separate("allele1", into=c("allele", "MAF1"), sep=":")  %>% mutate(MAF= ifelse(MAF1 < MAF2, MAF1, MAF2))%>%  inner_join(RSID, by="snp") %>% select(RSID, MAF)
All= PeakData %>% inner_join(snpmaf,by="RSID") %>% inner_join(c10orf88eqtl, by="RSID")
All$Pvalue=as.numeric(as.character(All$Pvalue))
All$MAF=as.numeric(as.character(All$MAF))

Join with eQTL and apa

my.res <- coloc.abf(dataset1=list(pvalues=All$Pvalue,N=52,type="quant"),
                    dataset2=list(pvalues=All$pval,N=69,type="quant"),
                    MAF=All$MAF)
PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf 
   0.5610    0.2080    0.1360    0.0506    0.0440 
[1] "PP abf for shared variant: 4.4%"
C10orf88= as.data.frame(t(my.res$summary ))%>% mutate(gene="C10orf88")
C10orf88
  nsnps PP.H0.abf PP.H1.abf PP.H2.abf  PP.H3.abf  PP.H4.abf     gene
1  2430 0.5607699 0.2084953 0.1361743 0.05058588 0.04397468 C10orf88

This isnt a great result but it works.

I need to do this for all of them.

Write MAF data:

write.table(snpmaf, "../data/coloc/snpmaf.txt", col.names = T, row.names = F, quote = F)
sbatch ColocApAeQTL.sh
cat ../data/coloc/*colocRes.txt > ../data/coloc/AllAssoccolocRes.txt

H0: neither trait has a genetic association in the region H1: only trait 1 has a genetic association in the region H2: only trait 2 has a genetic association in the region H3: both traits are associated, but with different causal variants H4: both traits are associated and share a single causal variant

I think you should use PP4/(PP4+PP3)

and count only when PP4+PP3 > 0.2

ColocRES=read.table("../data/coloc/AllAssoccolocRes.txt", col.names = c("nsnp",'Neither', 'apaQTL', 'eQTL', 'DifferentSnps', 'Coloc','gene'),stringsAsFactors = F) %>% select(-nsnp) %>% mutate(three_four=DifferentSnps+Coloc, Prop=Coloc/three_four)

ColocRES_filt=ColocRES %>% filter(three_four>.2)
ColocRES_filt1=ColocRES %>% filter(three_four>.1)
ColocRES_filt3=ColocRES %>% filter(three_four>.3)
ColocRES_filt4=ColocRES %>% filter(three_four>.4)
all=ggplot(ColocRES,aes(x=Prop)) +geom_histogram(bins=50) + labs(y="Number of Genes", x="PP4/(PP3+PP4)", title=paste("All Genes ", nrow(ColocRES), sep=": "))

one=ggplot(ColocRES_filt1,aes(x=Prop)) +geom_histogram(bins=50)+ labs(y="Number of Genes", x="PP4/(PP3+PP4)", title=paste("PP3+PP4 > .1 : ", nrow(ColocRES_filt1), "genes" , sep=" "))


two=ggplot(ColocRES_filt,aes(x=Prop)) +geom_histogram(bins=50)+ labs(y="Number of Genes", x="PP4/(PP3+PP4)", title=paste("PP3+PP4 > .2 :", nrow(ColocRES_filt), "genes", sep=" "))


three=ggplot(ColocRES_filt3,aes(x=Prop)) +geom_histogram(bins=50)+ labs(y="Number of Genes", x="PP4/(PP3+PP4)", title=paste("PP3+PP4 > .3 : ", nrow(ColocRES_filt3), "genes", sep=" "))

four=ggplot(ColocRES_filt4,aes(x=Prop)) +geom_histogram(bins=50)+ labs(y="Number of Genes", x="PP4/(PP3+PP4)", title=paste("PP3+PP4 > .4 :", nrow(ColocRES_filt4), 'genes', sep=" "))
plot_grid(all, one, two, three, four)

Version Author Date
1ca62a2 brimittleman 2020-02-20

Try with a higher powered eQTL set.

mkdir ../data/GeuvadiseQTL/
cp  /project2/yangili1/zpmu/geuvadis/results/eqtl_new/YRI/nom_YRI_9phenoPC_*.txt.gz ../data/GeuvadiseQTL/
gunzip ../data/GeuvadiseQTL/*
cat ../data/GeuvadiseQTL/nom_YRI* > ../data/GeuvadiseQTL/nom_YRI_9phenoPCALL.txt

MAF for these data:

cp  /project2/yangili1/zpmu/geuvadis/data/new_fastqtl/chr*.dose.r2.nodup.filtered.recode.YRI.frq.gz ../data/GeuvadiseQTL/
  
gunzip ../data/GeuvadiseQTL/*.gz

cat ../data/GeuvadiseQTL/*ose.r2.nodup.filtered.recode.YRI.frq > ../data/GeuvadiseQTL/allMAFRes.txt

mkdir ../data/coloc_PM

sbatch ColocApAeQTL_PM.sh

cat ../data/coloc_PM/*colocRes.txt > ../data/coloc_PM/AllAssoccolocResPM.txt
ColocRESPM=read.table("../data/coloc_PM/AllAssoccolocResPM.txt", col.names = c("nsnp",'Neither', 'apaQTL', 'eQTL', 'DifferentSnps', 'Coloc','gene'),stringsAsFactors = F) %>% select(-nsnp) %>% mutate(three_four=DifferentSnps+Coloc, Prop=Coloc/three_four)

ColocRESPM_filt=ColocRESPM %>% filter(three_four>.2)
ColocRESPM_filt1=ColocRESPM %>% filter(three_four>.1)
ColocRESPM_filt3=ColocRESPM %>% filter(three_four>.3)
ColocRESPM_filt4=ColocRESPM %>% filter(three_four>.4)
allPM=ggplot(ColocRESPM,aes(x=Prop)) +geom_histogram(bins=50) + labs(y="Number of Genes", x="PP4/(PP3+PP4)", title=paste("All Genes ", nrow(ColocRESPM), sep=": "))

onePM=ggplot(ColocRESPM_filt1,aes(x=Prop)) +geom_histogram(bins=50)+ labs(y="Number of Genes", x="PP4/(PP3+PP4)", title=paste("PP3+PP4 > .1 : ", nrow(ColocRESPM_filt1), "genes" , sep=" "))


twoPM=ggplot(ColocRESPM_filt,aes(x=Prop)) +geom_histogram(bins=50)+ labs(y="Number of Genes", x="PP4/(PP3+PP4)", title=paste("PP3+PP4 > .2 :", nrow(ColocRESPM_filt), "genes", sep=" "))


threePM=ggplot(ColocRESPM_filt3,aes(x=Prop)) +geom_histogram(bins=50)+ labs(y="Number of Genes", x="PP4/(PP3+PP4)", title=paste("PP3+PP4 > .3 : ", nrow(ColocRESPM_filt3), "genes", sep=" "))

fourPM=ggplot(ColocRESPM_filt4,aes(x=Prop)) +geom_histogram(bins=50)+ labs(y="Number of Genes", x="PP4/(PP3+PP4)", title=paste("PP3+PP4 > .4 :", nrow(ColocRESPM_filt4), 'genes', sep=" "))
plot_grid(allPM, onePM, twoPM, threePM, fourPM)

ggplot(ColocRESPM_filt,aes(x=Prop)) +geom_histogram(bins=50)+ labs(y="Number of Genes", x="PP4/(PP3+PP4)", title=paste("Colocalization results for apaQTLs and eQTLs \nPP3+PP4 > .2 :", nrow(ColocRESPM_filt), "genes", sep=" "))

Which genes are these:

ColocRESPM_filt5= ColocRESPM_filt %>% filter(Prop>.5) 
ColocRESPM_filt5$gene
 [1] "AP3M2"     "BLOC1S2"   "CENPQ"     "CHURC1"    "COX11"    
 [6] "ERAP2"     "GSTO1"     "HIBCH"     "HSD17B12"  "KDELR2"   
[11] "LINC00476" "MB21D2"    "MRPL43"    "MTG2"      "PPP2R3C"  
[16] "RAB31"     "SLFN5"     "SMDT1"     "TBC1D4"    "THEM4"    
[21] "TMEM140"   "TMEM80"    "VRK3"      "ZC2HC1A"   "ZNRD1"    
[26] "ZSWIM7"   
length(ColocRESPM_filt5$gene)
[1] 26

Are these unexplained:

UexPe=read.table("../data/Li_eQTLs/UnexplainedEgenes.txt",col.names = "GeneName") %>% filter(GeneName %in% ColocRESPM_filt5$gene)
UexPe
    GeneName
1      THEM4
2    BLOC1S2
3     MRPL43
4     TMEM80
5     ZSWIM7
6      SMDT1
7      ZNRD1
8      CENPQ
9     KDELR2
10   TMEM140
11   ZC2HC1A
12 LINC00476

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] coloc_3.2-1       forcats_0.3.0     stringr_1.3.1    
 [4] dplyr_0.8.0.1     purrr_0.3.2       readr_1.3.1      
 [7] tidyr_0.8.3       tibble_2.1.1      tidyverse_1.2.1  
[10] data.table_1.12.0 cowplot_0.9.4     ggplot2_3.1.1    
[13] snpStats_1.32.0   Matrix_1.2-15     survival_2.43-1  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.2          mvtnorm_1.0-8       lubridate_1.7.4    
 [4] lattice_0.20-38     assertthat_0.2.0    rprojroot_1.3-2    
 [7] digest_0.6.18       R6_2.3.0            cellranger_1.1.0   
[10] plyr_1.8.4          backports_1.1.2     pcaPP_1.9-73       
[13] stats4_3.5.1        evaluate_0.12       httr_1.3.1         
[16] pillar_1.3.1        zlibbioc_1.28.0     rlang_0.4.0        
[19] lazyeval_0.2.1      readxl_1.1.0        rstudioapi_0.10    
[22] whisker_0.3-2       rmarkdown_1.10      labeling_0.3       
[25] splines_3.5.1       munsell_0.5.0       broom_0.5.1        
[28] compiler_3.5.1      httpuv_1.4.5        modelr_0.1.2       
[31] pkgconfig_2.0.2     BiocGenerics_0.28.0 htmltools_0.3.6    
[34] tidyselect_0.2.5    workflowr_1.6.0     reshape_0.8.8      
[37] BMA_3.18.11         rrcov_1.4-7         crayon_1.3.4       
[40] withr_2.1.2         later_0.7.5         leaps_3.1          
[43] grid_3.5.1          nlme_3.1-137        jsonlite_1.6       
[46] gtable_0.2.0        git2r_0.26.1        magrittr_1.5       
[49] scales_1.0.0        cli_1.1.0           stringi_1.2.4      
[52] fs_1.3.1            promises_1.0.1      robustbase_0.93-3  
[55] xml2_1.2.0          generics_0.0.2      tools_3.5.1        
[58] glue_1.3.0          DEoptimR_1.0-8      hms_0.4.2          
[61] parallel_3.5.1      yaml_2.2.0          inline_0.3.15      
[64] colorspace_1.3-2    cluster_2.0.7-1     rvest_0.3.2        
[67] knitr_1.20          haven_1.1.2