Last updated: 2018-08-28

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180801)

    The command set.seed(20180801) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: f774786

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .RData
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
    
    Untracked files:
        Untracked:  com_threeprime.Rproj
        Untracked:  data/PeakPerExon/
        Untracked:  data/PeakPerGene/
        Untracked:  data/comp.pheno.data.csv
        Untracked:  data/dist_TES/
        Untracked:  data/dist_upexon/
        Untracked:  data/liftover/
        Untracked:  data/map.stats.csv
        Untracked:  data/map.stats.xlsx
        Untracked:  data/orthoPeak_quant/
    
    Unstaged changes:
        Deleted:    comparitive_threeprime.Rproj
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd f774786 brimittleman 2018-08-28 initialze APA pheno analysis and map peaks to genes


In this analysis I want to assign all of the orthologus peaks to the human and chimp mRNAs. Once I do this I will be able to create a PAS usage phenotype. This is x/y. X is the read count in a peak and y is the number of reads in any peak for the same gene. This analysis will follow a similar pipeline to https://brimittleman.github.io/threeprimeseq/pheno.leaf.comb.html. I will run all of this seperatly for the human and chimp peaks. Unfortunately I cannot forse strandedness here like I did in the human LCL. I lost the strand information in the liftover.

#!/bin/bash

#SBATCH --job-name=intGenes_orthopeaks
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=intGenes_orthopeaks.out
#SBATCH --error=intGenes_orthopeaks.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END

module load Anaconda3
source activate comp_threeprime_env


#human
bedtools intersect -wa -wb -sorted -a /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/humanOrthoPeaks.sort.bed  -b /project2/gilad/briana/genome_anotation_data/comp_genomes/gene_annos/humanGene_ncbiRefSeq_mRNA_sort.bed > /project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/humanOrthoPeaks.sort.refseqgenes.bed 


#chimp
bedtools intersect -wa -wb -sorted -a /project2/gilad/briana/comparitive_threeprime/data/ortho_peaks/chimpOrthoPeaks.sort.bed -b /project2/gilad/briana/genome_anotation_data/comp_genomes/gene_annos/chimpGene_refGene_mRNA_sort.bed > /project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/chimpOrthoPeaks.sort.refgenes.bed

The resulting file has info from everything. I need to use awk to keep just the colums I want. chr, start, end, peak name, “.”, gene strand, gene name. The first . is for a score and the second . is strand.

awk '{print $1 "\t" $2 "\t" $3 "\t" $4 "\t " "." "\t" $10 "\t" $8}' /project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/chimpOrthoPeaks.sort.refgenes.bed > /project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/chimpOrthoPeaks.sort.refgenes.sm.bed

awk '{print $1 "\t" $2 "\t" $3 "\t" $4 "\t " "." "\t" $10 "\t" $8}' /project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/humanOrthoPeaks.sort.refseqgenes.bed  > /project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/humanOrthoPeaks.sort.refseqgenes.sm.bed 

Before I run feature count I want to create an ID for each peak and transform the data into a SAF file. The ID will be peak#:ch#:start:end:strand:gene

#peakwGene2Saf_C.py  
from misc_helper import *

fout = file("/project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/chimpOrthoPeaks.sort.refgenes.sm.SAF",'w')
fout.write("GeneID\tChr\tStart\tEnd\tStrand\n")
for ln in open("/project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/chimpOrthoPeaks.sort.refgenes.sm.bed"):
    chrom, start, end, name, score, strand, gene = ln.split()
    start_i=int(start)
    end_i=int(end)
    ID = "%s:%s:%d:%d:%s:%s"%(name, chrom, start_i, end_i, strand, gene)
    fout.write("%s\t%s\t%d\t%d\t%s\n"%(ID, chrom, start_i, end_i, strand))
fout.close()

#peakwGene2Saf_H.py
from misc_helper import *

fout = file("/project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/humanOrthoPeaks.sort.refseqgenes.sm.SAF",'w')
fout.write("GeneID\tChr\tStart\tEnd\tStrand\n")
for ln in open("/project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/humanOrthoPeaks.sort.refseqgenes.sm.bed"):
    chrom, start, end, name, score, strand, gene = ln.split()
    start_i=int(start)
    end_i=int(end)
    ID = "%s:%s:%d:%d:%s:%s"%(name, chrom, start_i, end_i, strand, gene)
    fout.write("%s\t%s\t%d\t%d\t%s\n"%(ID, chrom, start_i, end_i, strand))
fout.close()

Feature counts on these peaks.

fc_orthopeaksWgene.sh

#!/bin/bash

#SBATCH --job-name=fc_orthopeaksWgene
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=fc_orthopeaksWgene.out
#SBATCH --error=fc_orthopeaksWgene.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END


module load Anaconda3
source activate comp_threeprime_env

# outdir: /project2/gilad/briana/comparitive_threeprime/data/PeakwGene_quant

featureCounts -a /project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/humanOrthoPeaks.sort.refseqgenes.sm.SAF -F SAF -o /project2/gilad/briana/comparitive_threeprime/data/PeakwGene_quant/HumanTotal_Orthopeak.quant /project2/gilad/briana/comparitive_threeprime/human/data/sort/*T-sort.bam -s 1

featureCounts -a /project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/humanOrthoPeaks.sort.refseqgenes.sm.SAF -F SAF -o /project2/gilad/briana/comparitive_threeprime/data/PeakwGene_quant/HumanNuclear_Orthopeak.quant /project2/gilad/briana/comparitive_threeprime/human/data/sort/*N-sort.bam -s 1


featureCounts -a /project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/chimpOrthoPeaks.sort.refgenes.sm.SAF -F SAF -o /project2/gilad/briana/comparitive_threeprime/data/PeakwGene_quant/ChimpTotal_Orthopeak.quant /project2/gilad/briana/comparitive_threeprime/chimp/data/sort/*T-sort.bam -s 1

featureCounts -a /project2/gilad/briana/comparitive_threeprime/data/PeaksGeneAnno/chimpOrthoPeaks.sort.refgenes.sm.SAF -F SAF -o /project2/gilad/briana/comparitive_threeprime/data/PeakwGene_quant/ChimpNuclear_Orthopeak.quant /project2/gilad/briana/comparitive_threeprime/chimp/data/sort/*N-sort.bam -s 1

This leads to loss a large number of reads most likely because they fall outside of the orthologous peaks or in peaks not assigned to genes. This is a huge problem in the chimps because there are only 2000 annotated genes.

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.1.1   Rcpp_0.12.18      digest_0.6.16    
 [4] rprojroot_1.3-2   R.methodsS3_1.7.1 backports_1.1.2  
 [7] git2r_0.23.0      magrittr_1.5      evaluate_0.11    
[10] stringi_1.2.4     whisker_0.3-2     R.oo_1.22.0      
[13] R.utils_2.7.0     rmarkdown_1.10    tools_3.5.1      
[16] stringr_1.3.1     yaml_2.2.0        compiler_3.5.1   
[19] htmltools_0.3.6   knitr_1.20       

This reproducible R Markdown analysis was created with workflowr 1.1.1